基于时序影像的农业活动因子提取与闽西耕地SOC数字制图  被引量:5

Digital SOC Mapping in Croplands Using Agricultural Activity Factors Derived from Time-Series Data in Western Fujian

在线阅读下载全文

作  者:聂祥琴 陈瀚阅[1,2,3] 牛铮 张黎明 刘炜[1,2] 邢世和 范协裕 李家国[4] NIE Xiangqin;CHEN Hanyue;NIU Zheng;ZHANG Liming;LIU Wei;XING Shihe;FAN Xieyu;LI JiaGuo(College of Resources and Environment,Fujian Agriculture and Forestry University,Fuzhou 350002,China;Key Laboratory of Soil Ecosystem Health and Regulation,Fujian Agriculture and Forestry University,Fuzhou 350002,China;State Key Laboratory of Remote Sensing Science,Aerospace Information Research Institute,Chinese Academy of Sciences,Bejing 100101,China;Aerospace Information Research Institute,Chinese Academy of Sciences,Bejing 100101,China)

机构地区:[1]福建农林大学资源与环境学院,福州350002 [2]福建省土壤生态系统健康与调控重点实验室,福州350002 [3]中国科学院空天信息创新研究院遥感科学国家重点实验室,北京100101 [4]中国科学院空天信息创新研究院,北京100101

出  处:《地球信息科学学报》2022年第9期1835-1852,共18页Journal of Geo-information Science

基  金:遥感科学国家重点实验室开放基金项目(OFSLRSS202112);高分辨率对地观测系统重大专项(06-Y30F04-9001-20/22);福建省自然科学基金项目(2021J01117、2019J01660);国家自然科学基金项目(41971050)。

摘  要:人类活动对表层耕地土壤有机碳(Soil Organic Carbon,SOC)影响强烈,但目前大范围复杂地貌地形区的耕地SOC数字制图对人为因素的空间刻画不足。本文以福建省西部耕地为研究对象,基于Sentinel-2/MSI时间序列数据提取轮作模式分类信息(Crop Rotation,CR),以及可反映轮作模式信息的植被特征变换变量(Harmonic Analysis of Time Series,HANTS),分别作为农业活动定性和定量因子,将常规气候和地形因子作为自然环境因子,并对不同类型环境变量进行组合(气候+地形、气候+地形+轮作模式、气候+地形+HANTS变量、气候+地形+轮作模式+HANTS变量)。基于随机森林模型(Random Forest,RF)对不同环境变量组合驱动的耕地表层SOC空间预测精度进行对比分析,探索以轮作模式为例的农业活动因子提高耕地表层SOC数字制图精度的可能性。结果表明,同时加入两种农业活动因子的RF模型表现最佳,其模型预测精度相较于纯自然环境变量驱动的模型有明显提高(R^(2)提高了89.47%,RMSE和MAE分别下降了10.66%和12.05%)。轮作模式类型(CR)和HANTS变量两种农业活动因子均被保留参与建模,尤其是轮作模式类型显著影响耕地SOC,在最佳模型的环境变量重要性中排序第四。由此可见,轮作模式相关农业活动因子可有效提高耕地SOC空间预测精度。在所有RF模型中,年降水量(Annual Rainfall,Rainfall)的重要性排名都是第一位。通过最佳模型反演得出该区耕地土壤有机碳均值为18.22±2.99 g/kg,范围为8.25~30.69 g/kg,双季稻和烟稻种植区域SOC含量高于稻菜种植区域。研究结果为复杂地貌地形区耕地土壤有机碳协同变量的更新提供了新的思路。Human activities significantly affect the amount and spatial variation of top Soil Organic Carbon(SOC)in croplands.However,the spatial distribution of agricultural management practices has not been carefully considered in SOC mapping in croplands,especially for croplands in large-scale complex landforms.A case study was conducted in agricultural area in western Fujian Province.Sentinel-2/MSI NDVI time series data were used to derive two types of variables that contains crop rotation information.One is the Crop Rotation(CR)pattern type,which was regarded as qualitative factors of agricultural activities.The other are variables generated using Harmonic Analysis based on sentinel-2 NDVI time series data(HANTS),which were regarded as quantitative factors of agricultural activities.Two types of agricultural activities factors,as well as natural environmental variables were adopted as predictive environmental variables.Four different combinations of above variables according to different categories were formed respectively(i.e.,climate factor+terrain factor,climate factor+terrain factor+crop rotation pattern,climate factor+terrain factor+HANTS variables,and climate factor+terrain factor+crop rotation pattern+HANTS variables).Random Forest(RF)models were developed based on four different combinations of above variables for predicting SOC.These RF models were compared to explore whether incorporating agricultural activity factors could improve the SOC mapping accuracy in croplands.Results showed that the combination of natural environment variables with both crop rotation type and variables derived through HANTS yielded the highest accuracy.Compared with the combination of natural environment variables,the prediction accuracy of the optimal model was significantly improved(R^(2)increased by 89.47%,RMSE and MAE decreased by 10.66%and 12.05%,respectively).Two types of agricultural activity factors were both adopted in optimal model,especially CR significantly affected the SOC in croplands,ranking fourth in the importance o

关 键 词:土壤有机碳 HANTS 轮作模式 农业活动因子 空间预测 Sentinel-2 随机森林 变量组合 

分 类 号:S153.6[农业科学—土壤学] S127[农业科学—农业基础科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象