基于改进麻雀搜索算法的瑞利波频散曲线反演  被引量:2

Inversion of Rayleigh wave dispersion curves based on the improved sparrow search algorithm

在线阅读下载全文

作  者:孙旭[1] 计子琦 杨庆义[1] 刘博政 SUN Xu;JI Zi-Qi;YANG Qing-Yi;LIU Bo-Zheng(Shandong Electric Power Engineering Consulting Institute Co.,Ltd.,Jinan 250014,China;Institute of Geophysics&Geomatics,China University of Geosciences(Wuhan),Wuhan 430074,China)

机构地区:[1]山东电力工程咨询院有限公司,山东济南250014 [2]中国地质大学(武汉)地球物理与空间信息学院,湖北武汉430074

出  处:《物探与化探》2022年第5期1267-1275,共9页Geophysical and Geochemical Exploration

摘  要:非线性优化算法在给定的参数搜索范围内对最优解进行全局搜索,在全局搜索方面具有先天的优势,具有一定的跳出局部极值的能力。本文将一种新兴的非线性优化算法——麻雀搜索算法引入瑞利波频散曲线反演问题,针对频散曲线反演问题瑞利波频散曲线反演问题多参数、多局部极值的特点,引入自适应t分布对算法进行改进。三种理论模型的反演实验数据表明,改进的麻雀搜索算法与传统麻雀搜索算法相比具有更好的反演精度和稳定性,同时具有较好的抗随机噪声的能力。与粒子群算法和差分进化算法两种较成熟的非线性优化算法进行对比,改进的麻雀搜索算法较好地平衡了迭代前期的全局搜索和迭代后期的局部搜索,取得了与粒子群算法和差分进化算法相比更好的效果。Nonlinear optimization algorithms can be used to conduct a global search for the optimal solutions within a given parameter range, inherently making them highly competent in performing a global search and escaping from local extrema.In this study, an emerging nonlinear optimization algorithm-the sparrow search algorithm(SSA) was introduced for the inversion of Rayleigh wave dispersion curves.To address the problems of multiple parameters and local extrema, adaptive t-distribution was introduced.The data acquired from the inversion experiment of three theoretical models indicate that the improved SSA has high inversion accuracy, stability, and resistance to random noise compared with the conventional SSA.Furthermore, the improved SSA can yield better performance than particle swarm optimization and differential evolution algorithm due to its capability to achieve a more reasonable balance between the early global search and late local search in the process of iteration.

关 键 词:频散曲线反演 非线性优化算法 麻雀搜索算法 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象