检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张浩杰 郭龑强 郭晓敏 张健飞 左冠华 张玉驰[3] 张天才[3] Zhang Hao-Jie;Guo Yan-Qiang;Guo Xiao-Min;Zhang Jian-Fei;Zuo Guan-Hua;Zhang Yu-Chi;Zhang Tian-Cai(Key Laboratory of Advanced Transducers and Intelligent Control System,Ministry of Education,College of Physics and Optoelectronics,Taiyuan University of Technology,Taiyuan 030024,China;State Key Laboratory of Cryptology,Beijing 100878,China;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Optoelectronics,Shanxi University,Taiyuan 030006,China)
机构地区:[1]太原理工大学物理与光电工程学院,新型传感器与智能控制教育部重点实验室,太原030024 [2]密码科学技术国家重点实验室,北京100878 [3]山西大学光电研究所,量子光学与光量子器件国家重点实验室,太原030006
出 处:《物理学报》2022年第19期137-146,共10页Acta Physica Sinica
基 金:国家自然科学基金(批准号:61875147,62175176,62075154,U21A6006);山西省重点研发计划(批准号:201903D421049);山西省回国留学人员科研资助项目(批准号:HGKY2019023)资助的课题。
摘 要:基于扩展的Hanbury Brown-Twiss方案研究相位可变压缩相干态的高阶光子关联及反聚束效应.通过调控压缩参数r、平移α和压缩相位θ,压缩相干态的高阶光子关联呈明显的反聚束效应.在压缩相位θ∈[0,π/2]范围内,较大α-r参数区间都可获得光场的高阶反聚束效应,理想情况下最小的反聚束值为g^((4))=6.6352×10.研究了背景噪声γ和系统探测效率η对高阶光子反聚束的影响,在较低探测效率η=0.1,背景噪声γ=10时,仍可获得明显的高阶反聚束效应g^((4))=0.0149,验证了更高阶光子关联的反聚束效应对实验环境具有较强的鲁棒性.此外,研究了相位可变压缩相干态的反聚束效应随探测平均光子数和压缩度S的变化,在探测平均光子数远小于1、压缩参数10以下时,仍可得到g^((n))<<0.5的显著的光子反聚束效应.结果表明利用对压缩相位θ的调控可制备具有明显反聚束效应的压缩相干态,在量子精密测量及保密通信领域有着潜在的重要应用.Squeezed state has important applications in quantum communication,quantum computing,and precision measurement.It has been used to improve the sensitivity and measurement accuracy of gravitational wave detectors.Currently,squeezed state can be prepared by optical parametric oscillators,four-wave mixing,and atom–optomechanical coupling.As a typical non-classical light,the photon statistics of squeezed state usually shows obvious bunching effect,but it can also present photon antibunching effect through interference or photon subtraction operation.More importantly,squeezed coherent state is prepared by performing displacement operation on the squeezed state.In the case of certain displacement and squeezing operations,squeezed coherent state with obvious antibunching effect can be produced.The squeezed coherent state with photon antibunching effect can be employed to achieve super-resolution imaging beyond the diffraction limit,and the state exhibits good particle features which can suppress the multiphoton emission.Then it has become a focus for studying the antibunching effect and quantum statistical properties of squeezed coherent state at a single-photon level.The photon antibunching effect can be characterized by the second-order photon correlation g^((2))(t),which is introduced by Glauber to determine the non-classical properties of the light field.Namely,the second-order photon correlation g^((2))can be used as a metric to distinguish different lights.Hanbury Brown-Twiss(HBT)scheme is used to measure the second-order photon correlation experimentally.However,the second-order photon correlation g^((2))can reflect only the variance of the photon-number statistical distribution.In order to obtain more information about the photon statistical distribution and non-classical features,it is necessary to measure higher-order photon correlations.Then the higher-order photon correlations for different light fields are studied by extending the traditional HBT scheme and combining with multiplex single-photon detection
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.17.81.34