Discontinuous Galerkin Methods for Multi-Pantograph Delay Differential Equations  

在线阅读下载全文

作  者:Kun Jiang Qiumei Huang Xiuxiu Xu 

机构地区:[1]College of Applied Sciences,Beijing University of Technology,Beijing 100124,China [2]School of Mathematical Sciences,Anhui University,Hefei 230031,China

出  处:《Advances in Applied Mathematics and Mechanics》2020年第1期189-211,共23页应用数学与力学进展(英文)

基  金:supported by the Natural Science Foundation of China(No.11571027),the International Research Cooperation Seed of Beijing University of Technology(No.2018B32);Science and Technology Projects of Beijing Education Commission Foundatio(No.KM201510005032),and the 16th graduate science and technology fund of Beijing university of technology(No.ykj-2017-00127).

摘  要:In this paper,the discontinuous Galerkin method is applied to solve the multi-pantograph delay differential equations.We analyze the optimal global convergence and local superconvergence for smooth solutions under uniform meshes.Due to the initial singularity of the forcing term f,solutions of multi-pantograph delay differential equations are singular.We obtain the relevant global convergence and local superconvergence for weakly singular solutions under graded meshes.The numerical examples are provided to illustrate our theoretical results.

关 键 词:Multi-pantograph discontinuous Galerkin method global convergence local superconvergence weakly singular graded meshes 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象