A Second-Order Three-Level Difference Scheme for a Magneto-Thermo-Elasticity Model  

在线阅读下载全文

作  者:Hai-Yan Cao Zhi-Zhong Sun Xuan Zhao 

机构地区:[1]Department of Mathematics,Southeast University,Nanjing 210096,China

出  处:《Advances in Applied Mathematics and Mechanics》2014年第3期281-298,共18页应用数学与力学进展(英文)

基  金:National Natural Science Foundation of China(No.11271068);the Research and Innovation Project for College Graduates of Jiangsu Province(No.CXLX110093).

摘  要:This article deals with the numerical solution to the magneto-thermoelasticity model,which is a system of the third order partial differential equations.By introducing a new function,the model is transformed into a system of the second order generalized hyperbolic equations.A priori estimate with the conservation for the problem is established.Then a three-level finite difference scheme is derived.The unique solvability,unconditional stability and second-order convergence in L∞-norm of the difference scheme are proved.One numerical example is presented to demonstrate the accuracy and efficiency of the proposed method.

关 键 词:Magneto-thermo-elasticity conservation finite difference SOLVABILITY stability convergence. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象