Coupling of Gaussian Beam and Finite Difference Solvers for Semiclassical Schrodinger Equations  

在线阅读下载全文

作  者:Emil Kieri Gunilla Kreiss Olof Runborg 

机构地区:[1]Division of Scientific Computing,Department of Information Technology,Uppsala University,Sweden [2]Department of Mathematics and Swedish e-Science Research Center(SeRC),KTH,Sweden

出  处:《Advances in Applied Mathematics and Mechanics》2015年第6期687-714,共28页应用数学与力学进展(英文)

摘  要:In the semiclassical regime,solutions to the time-dependent Schrodinger equation for molecular dynamics are highly oscillatory.The number of grid points required for resolving the oscillations may become very large even for simple model problems,making solution on a grid intractable.Asymptotic methods like Gaussian beams can resolve the oscillations with little effort and yield good approximations when the atomic nuclei are heavy and the potential is smooth.However,when the potential has variations on a small length-scale,quantum phenomena become important.Then asymptotic methods are less accurate.The two classes of methods perform well in different parameter regimes.This opens for hybrid methods,using Gaussian beams where we can and finite differences where we have to.We propose a new method for treating the coupling between the finite difference method and Gaussian beams.The new method reduces the needed amount of overlap regions considerably compared to previous methods,which improves the efficiency.

关 键 词:Gaussian beams semiclassical Schrodinger equation hybrid methods 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象