检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Chunze Zhang Yongguang Cheng Shan Huang Jiayang Wu
出 处:《Advances in Applied Mathematics and Mechanics》2016年第1期37-51,共15页应用数学与力学进展(英文)
基 金:supported by the National Natural Science Foundation of China(NSFC,Grant Numbers 10572106,10872153 and 11172219);the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20130141110013).
摘 要:Numerical instability may occur when simulating high Reynolds number flows by the lattice Boltzmann method(LBM).The multiple-relaxation-time(MRT)model of the LBM can improve the accuracy and stability,but is still subject to numerical instability when simulating flows with large single-grid Reynolds number(Reynolds number/grid number).The viscosity counteracting approach proposed recently is a method of enhancing the stability of the LBM.However,its effectiveness was only verified in the single-relaxation-time model of the LBM(SRT-LBM).This paper aims to propose the viscosity counteracting approach for the multiple-relaxationtime model(MRT-LBM)and analyze its numerical characteristics.The verification is conducted by simulating some benchmark cases:the two-dimensional(2D)lid-driven cavity flow,Poiseuille flow,Taylor-Green vortex flow and Couette flow,and threedimensional(3D)rectangular jet.Qualitative and Quantitative comparisons show that the viscosity counteracting approach for the MRT-LBMhas better accuracy and stability than that for the SRT-LBM.
关 键 词:Multiple-relaxation-time lattice Boltzmann method viscosity counteracting high Reynolds number flow Poiseuille flow Couette flow Taylor-Green vortex flow lid-driven cavity flow.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145