检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Wen-Xiu Ma Xiang Gu Liang Gao
机构地区:[1]Department of Mathematics and Statistics,University of South Florida,Tampa,FL 33620-5700,USA [2]Department of Physics,University of South Florida,Tampa,FL 33620-5700,USA [3]Department of Applied Mathematics,Northwestern Polytechnical University,Xi’an,Shaanxi 710072,P.R.China
出 处:《Advances in Applied Mathematics and Mechanics》2009年第4期573-580,共8页应用数学与力学进展(英文)
基 金:supported in part by the Established Researcher Grant and the CAS Faculty Development Grant of the University of South Florida,Chunhui Plan of the Ministry of Education of China,Wang Kuancheng Foundation,the National Natural Science Foundation of China(Grant Nos.10332030,10472091 and 10502042);the Doctorate Foundation of Northwestern Polytechnical University(Grant No.CX200616).
摘 要:It is known that the solution to a Cauchy problem of linear differential equations:x'(t)=A(t)x(t),with x(t0)=x0,can be presented by the matrix exponential as exp(∫_(t0)^(t)A(s)ds)x0,if the commutativity condition for the coefficient matrix A(t)holds:[∫_(t0)^(t)A(s)ds,A(t)]=0.A natural question is whether this is true without the commutativity condition.To give a definite answer to this question,we present two classes of illustrative examples of coefficient matrices,which satisfy the chain rule d/dt exp(∫_(t0)^(t)A(s)ds)=A(t)exp(∫_(t0)^(t)A(s)ds),but do not possess the commutativity condition.The presented matrices consist of finite-times continuously differentiable entries or smooth entries.
关 键 词:Cauchy problem chain rule commutativity condition fundamental matrix solution
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38