检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚冲 周晖[1] YAO Chong;ZHOU Hui(School of Information Science and Technology,Nantong University,Nantong 226019,China)
机构地区:[1]南通大学信息科学技术学院,江苏南通226019
出 处:《计算机工程与设计》2022年第10期2918-2925,共8页Computer Engineering and Design
基 金:国家自然科学基金项目(61501264)。
摘 要:为提高行人轨迹预测的准确率与速度,提出一种基于时空图的GAN轨迹预测模型。使用LSTM节点将人与环境交互的时空图转换为前馈可微分特征编码,提出用于集成场景上下文信息的全局节点,通过缩放点积注意力机制研究全局交互对行人轨迹的相对影响,使用生成对抗网络体系结构对模型在数据集中进行训练。此外,为使预测结果更加合理,结合行人历史轨迹运用控制点生成一组行人未来轨迹曲线作为假设建议,并与以上预测结果进行相似度分析。实验结果表明,所提模型预测速度与精准度均优于其它方法。To improve the accuracy and speed of pedestrian trajectory prediction,a GAN trajectory prediction model based on spatial-temporal graph was proposed.The LSTM node was used to convert the spatial-temporal graph of human-environment interaction into feed-forward differentiable feature coding,and a global node for integrating scene context information was innovatively proposed.The relative influence of global interaction on pedestrian trajectory was studied through the sealed dot product attention mechanism.Gencrativc adversarial network architecture was used to train the model in the data set.To make the prediction results more reasonable,a set of pedestrian future trajectory curves generated by combining the historical trajectory of pedestrians with control points were used as hypothetical suggestions,and similarity analysis was carried out with the above prediction results.Experimental results show that the prediction speed and accuracy of the proposed model are better than that of other methods.
关 键 词:行人轨迹预测 生成对抗网络 多模态 全局节点 缩放点积注意力机制
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112