基于模型的Meta分析建立中国老年人群美罗培南群体药动学模型  被引量:1

Meropenem population pharmacokinetic model for the Chinese elderly established by model-based META analysis

在线阅读下载全文

作  者:叶红波 宋洋洋 薛领[2] 芮建中 YE Hongbo;SONG Yangyang;XUE Ling;RUI Jianzhong(Department of Pharmacy,Anji Traditional Chinese Medicine Hospital,Huzhou 313100,Zhejiang,China;Department of Clinical Pharmacology,The First Affiliated Hospital of Soochow University,Suzhou 215006,Jiangsu,China;Department of Pharmacy,Nanjing General Hospital of PLA,Nanjing 210002,Jiangsu,China)

机构地区:[1]安吉县中医医院西药房,浙江湖州313100 [2]苏州大学附属第一医院临床药理室,江苏苏州215006 [3]解放军东部战区总医院药理科,江苏南京210002

出  处:《中国临床药理学与治疗学》2022年第9期984-990,共7页Chinese Journal of Clinical Pharmacology and Therapeutics

基  金:湖州市科学技术局项目(2020GY82)。

摘  要:目的:采用基于模型的Meta分析,建立美罗培南在中国老年人群的群体药动学模型。方法:通过文献检索,提取药物剂量、采样时间点、浓度、样本量、年龄、性别、体质量和肌酐清除率等数据。用NONMEM建立群体模型,采用逐步递归法筛选协变量。自举法和可视化检验(VPC)分别验证模型的稳定性和预测能力。结果:美罗培南的药动学采用二房室描述。经过协变量筛选,最终模型纳入肌酐清除率对CL,体质量对V_(1)的影响。自举法验证和VPC检验都显示模型的良好稳定性和预测能力。结论:通过基于模型的Meta分析的方法,建立一个更加具有代表性的美罗培南的中国老年人群体药动学模型。AIM:To build a meropenem population pharmacokinetic model for Chinese elderly through model-based meta-analysis.METHODS:Informations including dosing regimen,sampling times,concentrations,sample size,age,gender,body weight(BW)and creatinine clearance were extracted after the literature were retrieved.The model was built by NONMEM.Stepwise covariate modeling strategy was used for covariates analysis.RESULTS:A two-compartment model was applied to describe meropenem pharmacokinetics.After stepwise covariate modeling,covariates that remained significant in the final model were creatinine clearance(CLcr)on CL and the BW on V_(1).The stability and predictive performance were confirmed by bootstrapping and visual predictive check.CONCLUSION:A more representative population pharmacokinetics model of meropenem in Chinese elderly patients is built through model-base meta-analysis method.

关 键 词:美罗培南 MBMA 中国老年人 NONMEM 

分 类 号:R969.1[医药卫生—药理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象