Catalytic conversion of asphaltenes to BTXN using metal-loaded modified HZSM-5  被引量:1

在线阅读下载全文

作  者:Linyang Wang Qiang Wang Yongqi Liu Qiuxiang Yao Ming Sun Xiaoxun Ma 

机构地区:[1]School of Chemical Engineering,Northwest University,International Science&Technology Cooperation Base of MOST for Clean Utilization of Hydrocarbon Resources,Chemical Engineering Research Center of the Ministry of Education for Advanced Use Technology of Shanbei Energy,Shaanxi Research Center of Engineering Technology for Clean Coal Conversion,Collaborative Innovation Center for Development of Energy and Chemical Industry in Northern,Xi’an 710069,China [2]School of Science,Xijing University,Xi’an 710123,China

出  处:《Chinese Journal of Chemical Engineering》2022年第9期253-264,共12页中国化学工程学报(英文版)

基  金:financed by the project supported by the National Natural Science Foundation of China(21776229,21908180);National Key Research and Developent Program of China(2018YFB0604603);Key Research and Development Program of Shaanxi,China(2020ZDLGY11-02,2018ZDXM-GY-167);the project funded by China Postdoctoral Science Foundation(2019M653718,2020T130530);the project supported by Science and Technology Project of Yulin,China(2018-2-22)。

摘  要:HZSM-5 zeolites with Si/Al ratios of 20,35,50 and 65 were prepared by the directing crystallization process of silicalite-1 seeds.The influence of Si/Al ratios on the production of benzene,toluene,xylene and naphthalene(BTXN)originated from asphaltenes catalytic pyrolysis was explored by adopting Py-GC/MS.Modified Z5-50 zeolites were prepared by various metal ions(Ni^(2+),Mo^(6+),Fe^(3+),and Co^(2+))with different loading rates(3%(mass),5%(mass),7%(mass),and 9%(mass))and the physical and chemical properties of these zeolites were characterized by XRD,SEM,ICP-OES,XPS,NH_(3)-TPD,FTIR,Py-IR and N_(2)adsorption-desorption isotherm.In addition,they were employed to catalyze the conversion of asphaltenes pyrolysis production to BTXN using Py-GC/MS.Results show that the highest relative content of aromatics has been obtained over HZSM-5 with Si/Al ratio of 50(Z5-50),reaching 61.87%.Besides,the loading of Ni,Mo,Fe,and Co on Z5-50 leads to an increase of acid strength and provides new active sites.The relative content of BTXN increases by 3.17%over 3Ni-Z5,which may be ascribed to that Ni promoted the conversion of polycyclic aromatic hydrocarbons(PAHs)to monocyclic aromatics due to the cracking of aliphatic side chains of PAHs and the decrease of phenolic activation energy.While under the catalysis of 5Mo-Z5,the relative content of aromatics and BTXN augmented by 5.75%and 4.02%,respectively.In addition,the highest relative content of aromatics reaches 70.09%when the loading rate of Fe was 7%(mass),and the relative content of BTXN increases from 25.87%to 29.42%.The results demonstrate that the active sites provided by different metal species expressed diverse effects on BTXN.Although the Bronsted/Lewis acid ratios of HZSM-5 modified by metal decreased,the acid strength and the relative content of BTXN both increased,which illustrated that there is a synergistic catalysis with the Bronsted acid sites and Lewis acid sites provided by metal species.In general,the performance of the catalyst is affected by the pore structure,a

关 键 词:Coal tar ASPHALTENES HZSM-5 PYROLYSIS Metal-modification BTXN 

分 类 号:TQ241[化学工程—有机化工] TQ426

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象