检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张文昕 栗然[1] 臧向迪 严敬汝 祝晋尧 ZHANG Wenxin;LI Ran;ZANG Xiangdi;YAN Jingru;ZHU Jinyao(College of Electrical and Electronic Engineering,North China Electric Power University,Baoding 071003,China;Electric Power Research Institute of State Grid Hebei Electric Power Company,Shijiazhuang 050022,China;State Grid Shijiazhuang Electric Power Company,Shijiazhuang 050004,China)
机构地区:[1]华北电力大学电气与电子工程学院,河北保定071003 [2]国网河北省电力有限公司电力科学研究院,河北石家庄050022 [3]国网石家庄供电公司,河北石家庄050004
出 处:《电力自动化设备》2022年第10期134-141,共8页Electric Power Automation Equipment
摘 要:随着电动汽车的应用推广,换电站的调度优化逐渐成为研究热点。传统的基于换电需求预测值的调度策略在实际应用中面临着难以适应动态干扰因素、预测误差累积等问题。为了解决这些问题,提出了一种基于带基线的蒙特卡罗策略梯度法的换电站实时调度策略,用于优化换电站的充放电策略以及响应电池数量。提出了带基线的蒙特卡罗策略梯度强化学习,并为换电站实时调度问题选取合适的状态空间和动作空间;设计了奖励函数对智能体进行离线训练,从电池状态数据、分时电价和排队电动汽车数量中学习得到最优策略网络;在离线训练好的模型基础上进行实时调度策略测试。基于换电站的服务可用率和经济效益验证了所提调度策略的有效性和经济性,算例结果表明所提策略能对电网负荷起到一定的削峰填谷作用。With the application and promotion of electric vehicles,the scheduling optimization of battery swapping stations has gradually become a research focus. The traditional scheduling strategies based on the predicted values of swapping demand are faced with some problems in practical application,such as being difficult to adapt to dynamic interference factors and accumulation of prediction errors. In order to solve these problems,a real-time scheduling strategy of battery swapping station based on Monte Carlo policy gradient method with baseline is proposed to optimize the charging and discharging strategy and the number of response batteries of battery swapping station. Monte Carlo policy gradient reinforcement learning with baseline is proposed,and the appropriate state space and action space are selected for real-time scheduling of battery swapping station. The reward function is designed to train the agent off-line,and the optimal strategy network is learned from the battery state data,the time-of-use electricity price and the number of queuing electric vehicles. The real-time scheduling strategy is tested on the basis of off-line trained model.The effectiveness and economy of the proposed scheduling strategy are verified based on battery swapping station’s service availability and economic benefit. The results of an example show that the proposed strategy can play a certain role in peak load shifting of power grid.
关 键 词:电动汽车 换电站 强化学习 策略梯度 分时电价 实时调度
分 类 号:U469.72[机械工程—车辆工程] TM734[交通运输工程—载运工具运用工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15