检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘若男[1] 辛义忠[1] 李岩[2] Liu Ruonan;Xin Yizhong;Li Yan(School of Information Science and Engineering,Shenyang Universiy of Technology,Shenyang 110142,China;Department of Basic Courses,Shenyang Sport University,Shenyang 10102,China)
机构地区:[1]沈阳工业大学信息科学与工程学院,沈阳110142 [2]沈阳体育学院基础部,沈阳110102
出 处:《仪器仪表学报》2022年第7期279-287,共9页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(61100091)项目资助。
摘 要:针对动态签名验证中存在的动态特征长度不等、动态签名验证方法较复杂以及识别率较低等问题,提出了一种基于皮尔逊相关系数的动态签名验证方法。首先通过划分原始特征区域,筛选并计算对应区域内的特征权重和,然后利用皮尔逊相关分析法计算各签名特征间的相关系数;再将皮尔逊相关系数作为新特征,分析真伪签名的皮尔逊相关系数分布情况;最后结合高斯密度函数模型,并通过设置个体判别阈值来进行签名验证。实验结果表明,真签名内的皮尔逊相关系数普遍高于真伪签名间的皮尔逊相关系数,且本方法在SVC和xLongSignDB数据集上均展现了较优的签名验证性能,其中xLongSignDB数据集上的误拒率和误识率分别为2.1%和1.7%。The dynamic signature verification has problems of the unequal length of dynamic features, complex dynamic signature verification methods, and low recognition rate. To address these issues, a dynamic signature verification method based on correlation coefficient is proposed. First, the feature weight sum in the corresponding region is filtered and calculated by dividing the original feature region. And the correlation coefficients between signature features are calculated by the Pearson correlation analysis method. Secondly, the Pearson correlation coefficient distribution of genuine and simulated signatures is analyzed with the correlation coefficient as a new feature. Finally, the signature is evaluated by combining the Gaussian density function model and setting an individual discrimination threshold. Experimental results show that the Pearson correlation coefficient inside the genuine signature is generally higher than that between the genuine and simulated signatures. This method shows better signature verification performance on SVC and xLongSignDB data sets. The false rejection rate and false acceptance rate on xLongSignDB data sets are 2.1% and 1.7%, respectively.
关 键 词:皮尔逊相关系数 动态签名验证 特征权重 高斯密度函数
分 类 号:TH701[机械工程—仪器科学与技术] TP391[机械工程—精密仪器及机械]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.36.245