The Ultrafast and Accurate Mapping Algorithm FANSe3:Mapping a Human Whole-Genome Sequencing Dataset Within 30 Minutes  被引量:2

在线阅读下载全文

作  者:Gong Zhang Yongjian Zhang Jingjie Jin 

机构地区:[1]MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes,Institute of Life and Health Engineering,College of Life Science and Technology,Jinan University,Guangzhou 510632,China [2]Chi-Biotech Co.Ltd.,Shenzhen 518000,China

出  处:《Phenomics》2021年第1期22-30,共9页表型组学(英文)

基  金:collectively supported by the Ministry of Science and Technology of China,National Key Research and Development Program[2018YFC0910200/2017YFA0505001].

摘  要:Aligning billions of reads generated by the next-generation sequencing(NGS)to reference sequences,termed“mapping”,is the time-consuming and computationally-intensive process in most NGS applications.A Fast,accurate and robust mapping algorithm is highly needed.Therefore,we developed the FANSe3 mapping algorithm,which can map a 30×human wholegenome sequencing(WGS)dataset within 30 min,a 50×human whole exome sequencing(WES)dataset within 30 s,and a typical mRNA-seq dataset within seconds in a single-server node without the need for any hardware acceleration feature.Like its predecessor FANSe2,the error rate of FANSe3 can be kept as low as 10-9 in most cases,this is more robust than the Burrows-Wheeler transform-based algorithms.Error allowance hardly affected the identification of a driver somatic mutation in clinically relevant WGS data and provided robust gene expression profiles regardless of the parameter settings and sequencer used.The novel algorithm,designed for high-performance cloud-computing after infrastructures,will break the bottleneck of speed and accuracy in NGS data analysis and promote NGS applications in various fields.The FANSe3 algorithm can be downloaded from the website:http://www.chi-biote ch.com/fanse 3/.

关 键 词:Next-generation sequencing MAPPING SPEED ROBUSTNESS 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象