检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姜封国 曾枭 周玉明 于正 Jiang Fengguo;Zeng Xiao;Zhou Yuming;Yu Zheng(School of Architecture&Civil Engineering,Heilongjiang University of Science&Technology,Harbin 150022,China)
机构地区:[1]黑龙江科技大学建筑工程学院,哈尔滨150022
出 处:《黑龙江科技大学学报》2022年第5期665-671,共7页Journal of Heilongjiang University of Science And Technology
基 金:黑龙江省省属本科高校基本科研业务费项目(2020-KYYWF-0707)。
摘 要:为了提高花粉算法优化设计的效率和精度,通过改进基本花粉算法FPA,提出一种融合黄金正弦算法Golden-SA的IFPA-GSA算法。将非线性递减惯性权重引入花粉算法全局搜索阶段,调整固定转换概率为动态,引入历史全局最优解到局部搜索阶段,通过黄金正弦机制加强算法的全局搜索和局部开发能力,选取6个经典测试函数测试混合花粉算法的寻优精度和收敛速度,以经典十杆平面桁架结构优化为例评价混合花粉算法的优化效果。结果表明,IFPA-GSA算法的寻优精度和速度明显提升,优化结果较FPA算法减少了1.49%。该研究验证了IFPA-GSA算法在桁架结构优化设计中的可行性和有效性。This paper proposes an IFPA-GSA algorithm integrating Golden-SA algorithm to improve the efficiency and accuracy of the optimal design of the pollen algorithm by improving the basic pollen algorithm FPA.The study introducing the nonlinear decreasing inertia weight into the global search stage of the pollen algorithm;adjusting the fixed conversion probability to dynamic;introducing the historical global optimal solution into the local search stage;strengthening the global search and local development ability of the golden sine mechanism;selecting six classic test functions to test the optimization accuracy and convergence speed of the hybrid pollen algorithm;and evaluating the optimization effect of the hybrid pollen algorithm by taking the classical ten bar plane truss structure optimization as an example.The results show that the optimization accuracy and speed of IFPA-GSA algorithm are significantly improved,and the optimization result is 1.49%less than that of FPA algorithm.This study shows the feasibility and effectiveness of IFPA-GSA algorithm in the optimal design of truss structures.
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33