Receding-Horizon Trajectory Planning for Under-Actuated Autonomous Vehicles Based on Collaborative Neurodynamic Optimization  被引量:3

在线阅读下载全文

作  者:Jiasen Wang Jun Wang Qing-Long Han 

机构地区:[1]IEEE [2]the Future Network Research Center,Purple Mountain Laboratories,Nanjing 211111,China [3]the Department of Computer Science,the School of Data Science,City University of Hong Kong,Hong Kong,China [4]the School of Science,Computing and Engineering Technologies,Swinburne University of Technology,Melbourne VIC 3122,Australia

出  处:《IEEE/CAA Journal of Automatica Sinica》2022年第11期1909-1923,共15页自动化学报(英文版)

基  金:supported in part by the Research Grants Council of the Hong Kong Special Administrative Region of China(11202318,11203721);the Australian Research Council(DP200100700)。

摘  要:This paper addresses a major issue in planning the trajectories of under-actuated autonomous vehicles based on neurodynamic optimization.A receding-horizon vehicle trajectory planning task is formulated as a sequential global optimization problem with weighted quadratic navigation functions and obstacle avoidance constraints based on given vehicle goal configurations.The feasibility of the formulated optimization problem is guaranteed under derived conditions.The optimization problem is sequentially solved via collaborative neurodynamic optimization in a neurodynamics-driven trajectory planning method/procedure.Simulation results with under-actuated unmanned wheeled vehicles and autonomous surface vehicles are elaborated to substantiate the efficacy of the neurodynamics-driven trajectory planning method.

关 键 词:Collaborative neurodynamic optimization receding-horizon planning trajectory planning under-actuated vehicles 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] U463.6[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象