检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王学贺[1] 李晓磊 赵华[2] Wang Xuehe;Li Xiaolei;Zhao Hua(Division of Computer Science,Heze Medical College,Heze 274030,China;College of Computer Science and Engineering,Shandong University of Science and Technology,Qingdao 266590,China)
机构地区:[1]菏泽医学专科学校计算机教研室,山东菏泽274000 [2]山东科技大学计算科学与工程学院,山东青岛266590
出 处:《宁夏大学学报(自然科学版)》2022年第3期304-308,317,共6页Journal of Ningxia University(Natural Science Edition)
基 金:山东省自然科学基金面上项目(ZR2021MG038)。
摘 要:面对新冠肺炎疫情带来的重大影响,通过自然语言处理技术,深入挖掘民众关于新冠肺炎的观点与看法,为疫情期间政府应对网络舆情危机提供参考.针对当前研究中将主题和情感孤立研究的缺陷,首先从微博上收集网络舆情的相关数据,然后通过LDA主题模型和基于Bi-LSTM的情感分类方法进行主题-情感的融合分析.结果表明,Bi-LSTM模型可以较好地识别出喜、怒、哀、惧4类情感,同时LDA主题模型在热门主题挖掘方面也表现良好.Due to the severe impact brought by the COVID-19,natural language processing techniques are used to deeply explore and analyze people’s views and concerns,so as to provide reference for the government to respond to online public opinion crisis during the epidemic.To address the shortcomings of current research that usually studies topics and sentiments in isolation,relevant data on online public opinion from Weibo were collected,and then a topic-sentiment fusion analysis through LDA topic model and Bi-LSTM-based sentiment classification method was conducted.The results show that the Bi-LSTM model can better identify the four emotions of happiness,anger,sorrow and fear,and the LDA topic model also performs well in hot topic mining.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.38.31