多特征决策融合的音频copy-move篡改检测与定位  

Multi-feature decision fused detection and localization method for copy-move forgery of digital audio clips

在线阅读下载全文

作  者:张国富[1,2,3,4] 肖锐 苏兆品[1,2,3,4] 廉晨思 岳峰[1,4] Zhang Guofu;Xiao Rui;Su Zhaopin;Lian Chensi;Yue Feng(School of Computer Science and Information Engineering,Hefei University of Technology,Hefei 230601,China;Key Laboratory of Knowledge Engineering with Big Data(Hefei University of Technology),Ministry of Education,Hefei 230601,China;Intelligent Interconnected Systems Laboratory of Anhui Province(Hefei University of Technology),Hefei 230009,China;Anhui Province Key Laboratory of Industry Safety and Emergency Technology(Hefei University of Technology),Hefei 230601,China;Institute of Forensic Science,Department of Public Security of Anhui Province,Hefei 230000,China)

机构地区:[1]合肥工业大学计算机与信息学院,合肥230601 [2]大数据知识工程教育部重点实验室(合肥工业大学),合肥230601 [3]智能互联系统安徽省实验室(合肥工业大学),合肥230009 [4]工业安全应急技术安徽省重点实验室(合肥工业大学),合肥230601 [5]安徽省公安厅物证鉴定管理处,合肥230000

出  处:《中国图象图形学报》2022年第9期2697-2707,共11页Journal of Image and Graphics

基  金:安徽省重点研发计划资助(202004d07020011,202104d07020001);教育部人文社会科学研究青年基金项目(19YJC870021);广东省类脑智能计算重点实验室开放课题(GBL202117);中央高校基本科研业务费专项资金资助(PA2021GDSK0073,PA2021GDSK0074,PA2022GDSK0037)。

摘  要:目的随着各种功能强大的音频编辑软件的流行,使得不具备专业知识的普通用户也可以轻松随意地对数字音频文件进行编辑甚至是恶意篡改,这给数字音频的鉴真带来了极大挑战。其中,copy-move篡改是将同一段音频中的部分区域复制粘贴到其他部分,从而实现对音频的语义篡改。由于其篡改片段的特性与原始音频文件匹配度极高,导致检测难度极大,已成为音频取证领域的一个研究热点。然而,现有研究大多基于语音端点检测技术,只能检测出整个有声片段是否发生篡改,而无法准确定位篡改的具体位置。为此,本文提出一种基于多特征决策融合的音频copy-move篡改检测与定位方法。方法首先利用基于谱熵法的语音端点检测技术将音频划分为若干静音段和有声段,并基于能熵比方法进一步对有声段进行字节分割;然后提取每个字节的基音频率特征、颜色自相关图特征和短时能量特征,并利用动态时间规整距离计算任意两个字节在基音频率特征上的相似度,采用余弦距离计算两个字节在颜色自相关图特征上的相似度,利用短时能量和差值计算两个字节在短时能量特征上的相似度;最后基于多特征决策融合准确定位篡改位置。结果在相关数据集上的对比实验结果表明,本文提出的多特征决策融合方法在精确率和召回率上均优于对比方法,达到了90%以上。在检测的精确率上平均提升了约16%,在召回率上平均提升了约26%。此外,在定位的精准度上平均提升了约45%。而且,在对数据集进行一些常规信号处理攻击后,本文方法仍可以达到94%以上的检测准确率和召回率,且在检测的精确率上平均提升了约16%,在召回率上平均提升了约31%。结论本文方法不仅具有更高的检测精确率、召回率和定位精准度,而且对常规信号处理攻击也具有更好的鲁棒性。Objective Forensic-oriented digital audio technology has been intensively developing in terms of the growth of audio recordings.Digital audio recordings can be as the evidences for the legal disputes issue of civil litigation in common.However,the original semantic information of the audio recordings can be changed very easily by widely via several of digital audio editing software and their online tutorials.Consequently,audio forensics are challenged of the real or fake issue derived from tampered audio recording behavior.A copy-move forgery can distort the original recordings through audio clip.The source and the target segments in the copy-move forgery are both derived from the same audio recording compared to splicing and synthesized forgeries.Such attributes like amplitude,frequency,length,noise,tone,and even velocity can be well-matched between the forged segments and the recording,especially for the segments of very short duration for utterances.The requirement of blind audio tampering detection has promoted blind audio forensics via the copy-move forgery detection and localization on digital audio recordings.However,most of the existing methods divide the audio recording into very short multiple segments based on voice activity detection(VAD)related techniques.The accuracy of localization and forgery is challenged although the two similar segments can be identified within the recording.We facilitate multi-feature decision fusion method for detecting and localizing the audio copy-move forgeries.Method First,the audio recording is segmented into many voiced and unvoiced parts in terms of spectral-entropy-based VAD technology.Next,all the voiced segments are further split into syllables,each of which contains a Chinese character only according to the energy to spectral entropy ratio.Then,the pitch frequency,color auto-correlogram,and short-time energy features of each syllable are extracted respectively.The similarity of any two syllables on the pitch frequency features is calculated by the dynamic time warp

关 键 词:音频取证 copy-move篡改 检测与定位 多特征决策融合 基音频率 颜色自相关图 短时能量 

分 类 号:TN912.3[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象