On Split Regular Hom-Leibniz-Rinehart Algebras  

在线阅读下载全文

作  者:Shuangjian GUO Xiaohui ZHANG Shengxiang WANG 

机构地区:[1]School of Mathematics and Statistics,Guizhou University of Finance and Economics,Guizhou 550025,P.R.China [2]School of Mathematical Sciences,Qufu Normal University,Shandong 273165,P.R.China [3]School of Mathematics and Finance,Chuzhou University,Anhui 239000,P.R.China

出  处:《Journal of Mathematical Research with Applications》2022年第5期481-498,共18页数学研究及应用(英文版)

基  金:Supported by the National Natural Science Foundation of China (Grant No. 12161013);the Key Project of Guizhou University of Finance and Economics (Grant No. 2022KYZD05)。

摘  要:In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra L is of the form L=U+∑_(γ)I_(γ) with U a subspace of a maximal abelian subalgebra H and any I_(γ), a well described ideal of L, satisfying [I_(γ), I_(δ)] = 0 if [γ]≠[δ].In the sequel, we develop techniques of connections of roots and weights for split Hom-LeibnizRinehart algebras, respectively. Finally, we study the structures of tight split regular Hom-Leibniz-Rinehart algebras.

关 键 词:Hom-Leibniz-Rinehart algebra root space weight space decomposition simple ideal 

分 类 号:O15[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象