检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:封之聪 祝云[1] 高枫 FENG Zhi-cong;ZHU Yun;GAO Feng(Key Laboratory of Guangxi Electric Power System Optimization and Energy-saving Technology,Guangxi University,Nanning 530004,China)
机构地区:[1]广西电力系统最优化与节能技术重点实验室(广西大学),南宁530004
出 处:《科学技术与工程》2022年第26期11394-11401,共8页Science Technology and Engineering
基 金:广西研究生教育创新计划(YCSW2021055)。
摘 要:在火力发电过程中,蒸汽量的准确测量,对于汽轮机机组的经济稳定运行具有重要的意义。针对传统蒸汽量测量方法精度低的问题,提出了一种基于宽度学习系统(broad learning system,BLS)和Lasso(least absolute shrinkage and selection operator)回归模型的组合预测模型。首先利用One-class SVM(one-class support vector machines)算法对样本进行异常值检测,将检测得到的异常值剔除。然后,采用最大信息系数(maximal informationcoefficient,MIC)对特征变量和蒸汽量进行非线性关联性分析,确定宽度学习系统和Lasso回归模型的输入变量,通过训练得出各自的预测结果。最后,通过最优加权组合法确定两单一模型的权重系数,将它们所得的预测结果线性组合,得到最终的预测结果。实例表明,所建立的组合模型有效地缓解了单一模型在变化剧烈的峰值和谷值预测偏差大的问题,能够准确地预测蒸汽量。In thermal power generation,the accurate measurement of steam volume is of great significance for the economic and stable operation of steam turbine units.Aiming at the problem of low accuracy of traditional steam volume measurement methods,a combined prediction model based on broad learning system(BLS)and Lasso(least absolute shrinkage and selection operator)regression model was proposed.Firstly,the One-class SVM(one-class support vector machines)algorithm was used to detect the outliers of the samples data and eliminate the detected outliers.Then,the maximum information coefficient(MIC)was used to analyze the nonlinear correlation between characteristic variables and steam volume to determine the input variables of the BLS and Lasso regression model and obtain their prediction results through training,respectively.Finally,the weight coefficients of the two single models were determined by the optimal weighted combination method.The final prediction result was obtained by linearly combining the result of two single models.The example shows that the proposed combined model can effectively alleviate the problem that a large prediction deviation in the peak and valley values with sharp changes using the single model prediction.Moreover,it can accurately predict the steam volume.
关 键 词:蒸汽量预测 宽度学习系统 Lasso回归模型 最优加权组合法 组合模型
分 类 号:TK313[动力工程及工程热物理—热能工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.14.248.121