The Depths and the Attracting Centres for Continuous Maps on a Dendrite Whose Rank is Finite  

在线阅读下载全文

作  者:Guang Wang SU Cai Hong HAN Tai Xiang SUN Lue LI 

机构地区:[1]Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing,Guangxi University of Finance and Economics,Nanning 530003,P.R.China [2]College of Information and Statistics,Guangxi University of Finance and Economics,Nanning 530003,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2022年第9期1643-1652,共10页数学学报(英文版)

基  金:Supported NSF of Guangxi(Grant Nos.2022GXNSFAA035552,2020GXNSFAA297010);PYMRBAP for Guangxi CU(Grant No.2021KY0651)。

摘  要:Let D be a dendrite and f be a continuous map on D.Denote by R(f),Ω(f)andω(x,f)the set of recurrent points,the set of non-wandering points and the set ofω-limit points of x under f,respectively.WriteΩ_(k+1)(f)=Ω(f|_(()Ω_(k)(f)))andω^(k+1)(f)=∪_(()x∈ω~k(f))ω(x,f)for any positive integer k,whereΩ_(1)(f)=Ω(f)andω(f)=∪_(x∈D)ω(x,f).ω~m(f)is called the attracting centre of f ifω^(m+1)(f)=ω~m(f).In this paper,we show that if the rank of D is n-1,then we have the following results:(1)ω^(n+2)(f)=ω^(n+1)(f)and the attracting centre of f isω^(n+1)(f);(2)Ω_(n+2)(f)=■and the depth of f is at most n+2.Further,if the set of(n-1)-order accumulation points of Br(D)(the set of branch points of D)is a singleton,thenΩ_(n+1)(f)=■and the depth of f is at most n+1.Besides,we show that there exist a dendrite D_(1)whose rank is n-1 and the set of(n-1)-order accumulation points of Br(D_(1))is a singleton,and a continuous map g on D_(1)such thatω^(n+1)(g)≠ω~n(g)andΩn(f)≠■.

关 键 词:DENDRITE attracting centre DEPTH 

分 类 号:O211.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象