Amplification of Flood Risks by the Compound Effects of Precipitation and Storm Tides Under the Nonstationary Scenario in the Coastal City of Haikou,China  

在线阅读下载全文

作  者:Hongshi Xu Xi Zhang Xinjian Guan Tianye Wang Chao Ma Denghua Yan 

机构地区:[1]Yellow River Laboratory,Zhengzhou University,Zhengzhou 450001,China [2]Institute of Hydropower and Hydroinformatics,Dalian University of Technology,Dalian 116024,China [3]State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300350,China [4]China Institute of Water Resources and Hydropower Research,Beijing 100038,China

出  处:《International Journal of Disaster Risk Science》2022年第4期602-620,共19页国际灾害风险科学学报(英文版)

基  金:supported by the National Natural Science Foundation of China (Grant Numbers 52109040, 51739009);China Postdoctoral Science Foundation (Grant Number 2021M702950);Scientific and Technological Projects of Henan Province (Grant Number 222102320025);Key Scientific Research Project in Colleges and Universities of Henan Province of China (Grant Number 22B570003)

摘  要:In the context of climate change,coastal cities are at increased risk of extreme precipitation and sea level rise,and their interaction will aggravate coastal floods.Understanding the potential change of compound floods is valuable for flood risk reduction.In this study,an integrated approach coupling the hydrological model and copulabased design of precipitation and storm tides was proposed to assess the compound flood risk in a coastal city—Haikou,China.The copula model,most-likely weight function,and varying parameter distribution were used to obtain the combined design values of precipitation and storm tides under the nonstationary scenario,which were applied to the boundary conditions of the 1D-2D hydrological model.Subsequently,the change of the bivariate return periods,design values,and compound flood risks of precipitation and storm tides were investigated.The results show that the bivariate return period of precipitation and storm tides was reduced by an average of 34%under the nonstationary scenario.The maximum inundation areas and volumes were increased by an average of 31.1%and 45.9%respectively in comparison with the stationary scenario.Furthermore,we identified that the compound effects of precipitation and storm tides would have a greater influence on the flood risk when the bivariate return period is more than 50 years,and the peak time lag had a significant influence on the compound flood risk.The proposed framework is effective in the evaluation and prediction of flood risk in coastal cities,and the results provide some guidance for urban disaster prevention and mitigation.

关 键 词:Copula function Flood risk Haikou City Nonstationary scenario Urban hydrological model 

分 类 号:TV87[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象