检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Purple Mountain Labs,Nanjing 210000,China [2]China Communications Construction Second Harbor Engineering Company Ltd.,Wuhan 430040,China
出 处:《Intelligent and Converged Networks》2022年第2期217-227,共11页智能与融合网络(英文)
摘 要:This paper proposes a wireless network traffic prediction model based on long-term and short-term memory cyclic neural networks.Through simulation experiments,the throughput prediction of 5G wireless networks using different scheduling algorithms for many different types of services is studied.The results verify that the long short-term memory prediction model has acceptable prediction accuracy and algorithm training speed,meets the needs of wireless network traffic prediction,and has a good application prospect.
关 键 词:wireless network flow forecast long short-term memory(LSTM) SCHEDULE THROUGHPUT
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15