LARGE TIME BEHAVIOR OF THE 1D ISENTROPIC NAVIER-STOKES-POISSON SYSTEM  

在线阅读下载全文

作  者:Qingyou HE Jiawei SUN 何清友;孙家伟(Department of Mathematics,Capital Normal University,Beijing 100048,China;Department of Mathematics,Shandong Normal University,Jinan 250014,China)

机构地区:[1]Department of Mathematics,Capital Normal University,Beijing 100048,China [2]Department of Mathematics,Shandong Normal University,Jinan 250014,China

出  处:《Acta Mathematica Scientia》2022年第5期1843-1874,共32页数学物理学报(B辑英文版)

基  金:supported by National Natural Science Foundation of China(11931010,11671384,11871047 and 12101372);by the key research project of Academy for Multidisciplinary Studies,Capital Normal University;by the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds(007/20530290068).

摘  要:The initial value problem(IVP)for the one-dimensional isentropic compressible Navier-Stokes-Poisson(CNSP)system is considered in this paper.For the variables,the electric field and the velocity,under the Lagrange coordinate,we establish the global existence and uniqueness of the classical solutions to this IVP problem.Then we prove by the method of complex analysis,that the solutions to this system converge to those of the corresponding linearized system in the L^(2) norm as time tends to infinity.In addition,we show,using Green’s function,that the solutions to this system are close to a diffusion profile,pointwisely,as time goes to infinity.

关 键 词:1D Navier-Stokes-Poisson system WELL-POSEDNESS L^(2)-time decay rates timespace pointwise behaviors 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象