检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Qingyou HE Jiawei SUN 何清友;孙家伟(Department of Mathematics,Capital Normal University,Beijing 100048,China;Department of Mathematics,Shandong Normal University,Jinan 250014,China)
机构地区:[1]Department of Mathematics,Capital Normal University,Beijing 100048,China [2]Department of Mathematics,Shandong Normal University,Jinan 250014,China
出 处:《Acta Mathematica Scientia》2022年第5期1843-1874,共32页数学物理学报(B辑英文版)
基 金:supported by National Natural Science Foundation of China(11931010,11671384,11871047 and 12101372);by the key research project of Academy for Multidisciplinary Studies,Capital Normal University;by the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds(007/20530290068).
摘 要:The initial value problem(IVP)for the one-dimensional isentropic compressible Navier-Stokes-Poisson(CNSP)system is considered in this paper.For the variables,the electric field and the velocity,under the Lagrange coordinate,we establish the global existence and uniqueness of the classical solutions to this IVP problem.Then we prove by the method of complex analysis,that the solutions to this system converge to those of the corresponding linearized system in the L^(2) norm as time tends to infinity.In addition,we show,using Green’s function,that the solutions to this system are close to a diffusion profile,pointwisely,as time goes to infinity.
关 键 词:1D Navier-Stokes-Poisson system WELL-POSEDNESS L^(2)-time decay rates timespace pointwise behaviors
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249