GLOBAL WELL-POSEDNESS FOR THE FULL COMPRESSIBLE NAVIER-STOKES EQUATIONS  

在线阅读下载全文

作  者:Jinlu LI Zhaoyang YIN Xiaoping ZHAI 李金禄;殷朝阳;翟小平(School of Mathematics and Computer Sciences,Gannan Normal University,Ganzhou 341000,China;Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China;Faculty of Information Technology,Macao University of Science and Technology,Macao,China;Department of Mathematics,Guangdong University of Technology,Guangzhou 510520,China;School of Mathematics and Statistics,Shenzhen University,Shenzhen 518060,China)

机构地区:[1]School of Mathematics and Computer Sciences,Gannan Normal University,Ganzhou 341000,China [2]Department of Mathematics,Sun Yat-sen University,Guangzhou 510275,China [3]Faculty of Information Technology,Macao University of Science and Technology,Macao,China [4]Department of Mathematics,Guangdong University of Technology,Guangzhou 510520,China [5]School of Mathematics and Statistics,Shenzhen University,Shenzhen 518060,China

出  处:《Acta Mathematica Scientia》2022年第5期2131-2148,共18页数学物理学报(B辑英文版)

基  金:supported by the National Natural Science Foundation of China(11801090 and 12161004);Jiangxi Provincial Natural Science Foundation,China(20212BAB211004);supported by the National Natural Science Foundation of China(12171493);supported by the National Natural Science Foundation of China(11601533);Guangdong Provincial Natural Science Foundation,China(2022A1515011977);the Science and Technology Program of Shenzhen under grant 20200806104726001.

摘  要:We are concerned with the Cauchy problem regarding the full compressible Navier-Stokes equations in R^(d)(d=2,3).By exploiting the intrinsic structure of the equations and using harmonic analysis tools(especially the Littlewood-Paley theory),we prove the global solutions to this system with small initial data restricted in the Sobolev spaces.Moreover,the initial temperature may vanish at infinity.

关 键 词:compressible Navier-Stokes equations global well-posedness Friedrich's method compactness arguments 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象