检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张琦 张慧 潘健[1] 刘松林 ZHANG Qi;ZhANG Hui;PAN Jian;LIU Songlin(Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System,School of Electrical and Electronic Engineering,Hubei Univ.of Tech.,Wuhan 430068,China)
机构地区:[1]湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室,电气与电子工程学院,湖北武汉430068
出 处:《湖北工业大学学报》2022年第5期23-27,共5页Journal of Hubei University of Technology
基 金:湖北省重点实验室开放基金(HBSEES201902)。
摘 要:为了更好地对退化图像进行降噪,提升算法运行效率,同时保留复原图像边缘细节信息,提出了一种交替卡尔曼滤波图像复原算法。与传统方法相比,该算法不需要估计退化函数,仅需将退化图像的信息矩阵第一行(或列)代入卡尔曼滤波预测方程作为初始值进行滤波,然后将第一次滤波图像的信息矩阵第一列(或行)代入卡尔曼滤波预测方程作为初始值进行第二次滤波获得复原图像。仿真结果表明,交替卡尔曼滤波图像复原算法在去除退化噪声保证图像清晰的同时,还能快速完成图像复原,其计算时间降为维纳滤波复原法计算时间的2%。In order to reduce the noise of the degraded image better, improve the efficiency of the algorithm, and retain the details of the edge of the restored image, an alternative Kalman filter image restoration algorithm is proposed. Compared with the traditional method, this algorithm does not need to estimate the degradation function. It only needs to substitute the first row(or column) of the information matrix of the degraded image into the Kalman filter prediction equation as the initial value for filtering, and then filter the image information for the first time. The first column(or row) of the matrix is substituted into the Kalman filter prediction equation as the initial value to perform the second filtering to obtain the restored image. The simulation results show that the alternative Kalman filter restoration algorithm can quickly complete image restoration while removing degraded noise and ensuring image clarity. The calculation time is reduced to 2% of the calculation time of the Wiener filter restoration method.
关 键 词:交替卡尔曼滤波 图像复原 维纳复原 预测方程 退化图像
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.11