基于数字图像处理技术的白麻花岗岩含水率检测  被引量:2

Detection of water content of white granite based on digital image processing technology

在线阅读下载全文

作  者:王心雨 毕文波[1,2,3] 张进生 张恒[1,2,3] WANG Xinyu;BI Wenbo;ZHANG Jinsheng;ZHANG Heng(School of Mechanical Enginering,Shandong University,Jinan 250100,China;Shandong Stone Engineering Technology Research Center,Jinan 250013,China;Key Laboratory of High Efficiency and Clean Machinery Manufacturing,Ministry of Education,Jinan 250013,China)

机构地区:[1]山东大学机械工程学院,济南250100 [2]山东省石材工程技术研究中心,济南250013 [3]高效洁净机械制造教育部重点实验室,济南250013

出  处:《无损检测》2022年第8期43-47,共5页Nondestructive Testing

基  金:山东省重点研发计划(2019GGX104022);日照市科技创新专项项目(2019CXZX1109);日照市重点研发计划项目(2021ZDYF01019)。

摘  要:针对花岗岩含水率检测周期长、自动化程度低等问题,以白麻花岗岩为研究对象,提出了基于图像特征的含水率检测方法。利用数字图像处理技术对白麻花岗岩图像进行分割、亮度归一化、降噪等处理,以降低图像亮度不同和颜色对比度差的影响,分析了图像灰度直方图的均值、方差、歪斜度、峰态、熵等5种图像特征与含水率之间的相关性,基于最小二乘法进行线性回归分析,建立了基于图像特征的白麻花岗岩含水率检测模型。通过含水率检测试验对该模型进行验证,结果表明,检测相对误差的均值为2.10%,方差为1.05,平均检测时长为15.59 s,该模型具有较高的检测精度和较快的检测速度。Aiming to solve the problems of long period and low automation of granite moisture content detection and taking white granite as the research object, a moisture content detection method based on image features was proposed. The digital image processing technology was used to segment, normalize and denoise the white granite image to reduce the influence of different image brightness and poor color contrast. The correlation between the five image features of image gray histogram and water content was analyzed, and the linear regression analysis is carried out based on the least square method, The moisture content detection model of white granite based on image features was established. The model was verified by moisture content detection test. The results show that the mean value of detection relative error is 2.10%, the variance is 1.05, and the average detection time is 15.59 s, indicating that the detection model has high detection accuracy and fast detection speed.

关 键 词:白麻花岗岩 含水率 图像处理 无损检测 回归分析 

分 类 号:TG115.28[金属学及工艺—物理冶金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象