基于自然语言处理技术和蓝光存储技术的电网数据池构建研究  被引量:2

Research on Construction of Power Grid Data Pool Based on Natural Language Processing Technology and Blue Ray Storage Technology

在线阅读下载全文

作  者:陈骏 刘敏 陈珊珊 王䶮飞 CHEN Jun;LIU Min;CHEN Shanshan;WANG Yanfei(Jiangsu Suxing Asset Management Co.,Ltd.,Nanjing 210000,China)

机构地区:[1]江苏苏星资产管理有限公司,江苏南京210000

出  处:《电力勘测设计》2022年第10期7-12,共6页Electric Power Survey & Design

摘  要:为了构建电网数据池存在数据节点安全等级不明确、响应速度较慢问题,提出基于自然语言处理技术和蓝光存储技术的电网数据池构建方法。根据电网数据类型,获取电网数据分布式特征,预测电力负荷,计算数据节点的安全等级;设置语义序列,利用自然语言处理技术标注电网数据信息,结合蓝光存储技术结构层,布局数据存储密度,实现电网数据池构建。实验结果表明:此次构建的电网数据池在5000、10000、15000及20000用户并发数条件下,对比当前的基于可视化技术的数据构建模型和基于区块连接技术的数据管理模型,电网数据池的响应时长平均值分别降低了2.82 ms和3.58 ms,证明自然语言处理技术和蓝光存储技术更加适用于电网数据池构建。In order to solve the problems of unclear security level and slow response speed of data nodes in the construction of power grid data pool,a construction method of power grid data pool based on natural language processing technology and Blu ray storage technology is proposed.According to the type of power grid data,obtain the distributed characteristics of power grid data,predict the power load,and calculate the security level of data nodes;Set the semantic sequence,mark the power grid data information by using natural language processing technology,and layout the data storage density in combination with the structural layer of Blu ray storage technology to realize the construction of power grid data pool.The experimental results show that under the conditions of 5000,10000,15000 and 20000 concurrent users,compared with the current data construction model based on visualization technology and the data management model based on block connection technology,the average response time of the power grid data pool is reduced by 2.82 ms and 3.58 ms respectively,It is proved that natural language processing technology and Blu ray storage technology are more suitable for the construction of power grid data pool.

关 键 词:电网数据池 自然语言处理技术 蓝光储存技术 数据安全 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象