电力现货市场中多虚拟电厂交易策略  被引量:9

Trading Strategy of Multiple Virtual Power Plants in the Electricity Spot Market

在线阅读下载全文

作  者:伊书鑫 胡健[1] 路尧 马景岳 YI Shu-xin;HU Jian;LU Yao;MA Jing-yue(School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo 255000,China)

机构地区:[1]山东理工大学电气与电子工程学院,山东淄博255000

出  处:《控制工程》2022年第9期1587-1592,共6页Control Engineering of China

基  金:国家电网公司科技项目(SGHADK00PJJS1900192)。

摘  要:随着电力现货市场建设的不断推进,可再生能源(RE)在电力现货市场中的交易策略备受关注。由于市场电价的不确定性以及可再生能源产量的波动性,RE很难单独参与电力市场竞标。针对这个问题,将风能、光伏、储能装置以及燃气轮机聚合起来形成虚拟电厂(VPP),是稳定输出偏差、促进可再生能源消耗的有效途径。建立了3种不同场景下的多虚拟电厂博弈模型对多虚拟电厂参与电力现货市场的策略进行研究,并分别分析了日前(DA)以及实时(RT)市场中鲁棒优化系数对虚拟电厂利润的影响,最终证明考虑需求响应及博弈的多虚拟电厂模型能够有效提升虚拟电厂在电力现货市场中的收益。With the development of the electricity spot market, the trading strategy of renewable energy(RE) in the electricity spot market has attracted much attention. Due to the uncertainty of market electricity prices and the volatility of renewable energy production, it is difficult for RE to bid in the electricity market alone. To solve this problem, it is an effective way to stabilize output deviation and promote renewable energy consumption by combining wind energy, photovoltaic, energy storage devices and gas turbines to form a virtual power plant(VPP). In this paper, three game models of the multiple virtual power plant under different scenarios are established to study the strategies of the multiple virtual power plant participating in the electricity spot market. The impact of the robust optimization coefficient on the profit of the virtual power plant in day-ahead(DA) and real-time(RT) markets is analyzed respectively. Finally, it is proved that the multiple virtual power plant model considering demand response and game can effectively improve the revenue of the virtual power plant in the electricity spot market.

关 键 词:多虚拟电厂博弈 电力现货市场 可再生能源 鲁棒优化系数 

分 类 号:TM-9[电气工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象