检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏晓 王晓鑫 陈永琪 张惠然[1,2,3] WEI Xiao;WANG Xiaoxin;CHEN Yongqi;ZHANG Huiran(School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China;Center of Materials Informatics and Data Science,Materials Genome Institute,Shanghai University,Shanghai 200444,China;Zhejiang Laboratory,Hangzhou 311100,Zhejiang,China)
机构地区:[1]上海大学计算机工程与科学学院,上海200444 [2]上海大学材料基因组工程研究院材料信息与数据科学中心,上海200444 [3]之江实验室,浙江杭州311100
出 处:《上海大学学报(自然科学版)》2022年第3期386-398,共13页Journal of Shanghai University:Natural Science Edition
基 金:国家重点研发计划资助项目(2018YFB0704400);云南省重大科技专项资助项目(202002AB080001-2,202102AB080019-3);之江实验室科研攻关资助项目(2021PE0AC02);上海张江国家自主创新示范区专项发展资金重大资助项目(ZJ2021-ZD-006)。
摘 要:如何将材料领域知识与机器学习技术相结合是材料智能研究迫切需要解决的问题.知识图谱(knowledge graphs,KGs)作为一种高效的知识组织模型,可以有效地对材料领域知识进行表示、组织和推理,从而提升材料机器学习算法的智能水平.研究了基于自然语言处理技术的材料领域知识自动获取方法,提出了基于双向门控循环单元-图神经网络-条件随机场(bidirectional-gated recurrent unit-graph neural network-conditional random field,Bi-GRU-GNN-CRF)的材料实体关系联合抽取方法,以及基于改进TextRank算法的材料工艺知识抽取方法,实现了从专利、论文等材料文献中自动获取材料实体、关系、工艺流程等材料领域知识.实验结果表明,所提出的材料知识获取方法具有较好的精度和召回率,能够有效提升材料知识图谱的知识覆盖度.基于该方法构建的材料领域知识图谱的知识覆盖率达到了80%,能够为材料智能研发提供更加全面的知识支撑.同时,构建了非调制特殊钢、铝基复合材料、热障陶瓷涂层材料3个材料领域知识图谱,并进行了应用探索,进一步验证了知识图谱为材料研发提供知识支撑的可能性.Determining how to combine material-domain knowledge with the machine learning method is an urgent problem in materials intelligence.As an efficient knowledge-organization method,knowledge graphs(KGs)can effectively represent,organize,and reasoning material-domain knowledge so as to improve the intelligence level of machine-learning algorithms for materials.In this paper,we study natural language processing(NLP)-based knowledge-acquisition methods for materials and propose a joint extraction method comprising the material entity relationship based on bidirectional-gated recurrent unit-graph neural network-conditional random field(Bi-GRU-GNN-CRF)and a material-processing knowledge-extraction method based on the improved TextRank algorithm.Using the proposed knowledge-acquisition method,we acquire material-domain knowledge such as material entities,relationships,and technological processes from patents,papers,and other types of texts.The experimental results show that the proposed knowledge acquisition method has good accuracy and recall,which can effectively improve the knowledge coverage of the material KGs.The knowledge coverage of the material KGs constructed based on proposed method reaches 80%,which provides more comprehensive knowledge support for materials research and development.We also construct the domain KGs of special non-modulated steel,an aluminum matrix composite material,and a thermal-barrier ceramic-coating material,and the results further verify the potential of using material knowledge maps in materials research and development.
分 类 号:TP182[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.56