检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汤润泽 衡勇 孙晓辉 高谦 TANG Runze;HENG Yong;SUN Xiaohui;GAO Qian(Beijing Institute of Electronic System Engineering,Beijing 100854,China Vol.8,No.3 September,2022)
出 处:《指挥与控制学报》2022年第3期303-310,共8页Journal of Command and Control
摘 要:随着深度强化学习等人工智能(artificial intelligence,AI)技术在即时策略游戏(real-time strategy games,RTS)中的广泛应用,游戏智能体的博弈对抗能力有了颠覆性的跃升.由于RTS游戏与防空作战具有高度的类似性,如何将游戏智能体技术成功应用在防空武器中值得深入研究和思考.在未来大规模、高动态、强对抗的战场环境下,为了赋予防空武器智能决策的能力,提出了将防空作战与RTS游戏进行类比的思路,借鉴了RTS游戏智能体中的成功经验和关键技术,重点研究防空武器智能决策训练架构、系统级智能决策架构及算法、体系级智能决策架构及算法等应用方向,旨在将人工智能技术引入防空武器装备,达到提升武器系统作战效能的目的.With the wide application of artificial intelligence technologies such as deep reinforcement learning in real-time strategy games(RTS),the game agent’s ability to compete against each other has undergone a subversive leap.Due to the high similarity between RTS games and air defense operations,how to successfully apply the game agent technology to air defense weapons is worthy of in-depth study and consideration.In the future battlefield environment of large-scale,highly dynamic and strong confrontation,in order to equip air defense weapons the ability to make intelligent decisions like human beings,an analogy thinking between air defense operations and RTS games is proposed,the successful experience and key technologies of RTS game agents are drawn.The intelligent decision-making architecture training of air defense weapon,the intelligent decision-making architecture of single-equipment and intelligent decision-making architecture of multi-equipment and algorithm are studied in detail,aiming to introduce the artificial intelligence technology into the air defense weapon equipment to achieve the purpose of improuing the combat effectiveness of weapon systems.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.175.71