图马尔可夫卷积神经网络半监督文本分类研究  被引量:4

Graph Markov Convolutional Networks for Semi-Supervised Text Classification

在线阅读下载全文

作  者:李社蕾[1] 周波 杨博雄 LI She-lei;ZHOU Bo;YANG Bo-xiong(School of Information&Inteligence Engineering,University of Sanya,Sanya Hainan 572000,China)

机构地区:[1]三亚学院信息与智能工程学院,海南三亚572022

出  处:《计算机仿真》2022年第9期288-292,共5页Computer Simulation

基  金:国家自然科学基金青年项目(62006139);海南省自然科学基金面上项目(619MS076);海南省自然科学基金高层次人才项目(2019RC257)。

摘  要:随着卷积神经网络在图结构数据上的成功泛化,许多研究者将图卷积神经网络应用于文本分类;在上述方法中,以文档和单词为节点构造异构文本图网络,通过学习图节点的特征表示进行文本分类,未能有效利用节点标签的依赖关系。现提出了文本图马尔可夫卷积神经网络(TextGMCN)模型,模型利用异构图中未分类节点的条件联合分布建模节点标签的依赖性;模型利用图卷积神经网络通过端到端的训练,学习有效的文本节点表示。通过变分EM算法进行训练。在多个基准数据集上的实验结果表明,考虑文本节点标签依赖性的TextGMCN模型取得了更优的节点分类性能。With the successful generalization of the convolutional neural network on the graph, many researchers have applied the graph convolutional neural network to text classification. In this method, heterogeneous text graph networks are constructed with documents and words as nodes, and text is classified by learning the characteristic representation of nodes, which fails to effectively utilize the dependency of node labels. In this paper, a text graph Markov convolutional neural network(TextGMCN) model is proposed, which uses the conditional joint distribution of unclassified nodes in heterogeneous graphs to model the dependency of node labels. The model uses the graph convolutional neural network to learn the effective representation of text nodes through end-to-end training. The training is carried out by means of a variational EM algorithm. Experimental results on multiple datasets show that the TextGMCN model considering the label dependency of text nodes achieves better node classification performance.

关 键 词:图卷积神经网络 文本分类 条件随机场 变分最大期望算法 

分 类 号:TP83[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象