检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李淡远 郑力[1] LI Danyuan;ZHENG Li(Department of Industrial Engineering,Tsinghua University,Beijing 100084,China)
出 处:《工业工程与管理》2022年第4期123-133,共11页Industrial Engineering and Management
基 金:中国质量发展研究院开放课题:“基于过程挖掘的数据质量评价框架研究”。
摘 要:制造型企业依靠制造执行系统等信息系统来实现高效的生产计划与管控,然而,企业在实施信息化的过程中往往会遇到许多阻碍,导致信息系统实施失败。在这些阻碍中,数据不准确或者更广义的数据质量低下被认为是一个主要的因素。针对该问题提出了一个面向生产管控的数据质量评估与分析框架,该框架分为4个步骤,包括数据模型构建、数据和度量选择、度量实施、结果分析。该框架可以帮助企业评估生产管控信息系统的实施质量,并通过评估企业当前的生产管控数据质量水平,找出导致数据质量问题的根因。最后以一家中国汽车零部件制造企业为例,对该框架进行了实现和验证。结果表明,该框架能够为生产管控数据的质量评估与分析提供有效的指导。Manufacturing enterprises rely on information systems such as MES to achieve efficient production planning and control. However,in the process of informationization,many enterprises will encounter obstacles which can lead to the failure of information systems implementation. Among those obstacles,inaccurate data,or more generally,poor data quality is found to be a major culprit. To solve this problem,a data quality assessment and analysis framework for production control was proposed.The framework took four steps,including construction of data model,selection of data and metrics,implementation of measurement,analysis of results,to help data quality managers evaluate the current production control data quality level and find out potential deficiencies that might cause data quality problems. The framework was implemented and validated through a case study of a Chinese automobile parts manufacturing enterprise. The results indicate that the framework can provide helpful guidelines for production control data quality assessment and analysis.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173