检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:蔡恩磊 王立平 孙丽荣[3,4] 杨金光 王冬 李学崑[2] CAI En-lei;WANG Li-ping;SUN Li-rong;YANG Jin-guang;WANG Dong;LI Xue-kun(School of Mechanical and Electrical Engineering,UESTC,Chengdu 611731,China;Department of Mechanical Engineering,Tsinghua University,Beijing 100084,China;State Key Laboratory of Rolling and Automation,Shenyang 110819,China;Shandong Iron and Steel Group Rizhao Co.,Ltd.,Rizhao 276806,China)
机构地区:[1]电子科技大学机械与电气工程学院,四川成都611731 [2]清华大学机械工程系,北京100084 [3]轧制技术及连轧自动化国家重点实验室,辽宁沈阳110819 [4]山东钢铁集团日照有限公司,山东日照276806
出 处:《机电工程》2022年第10期1462-1469,共8页Journal of Mechanical & Electrical Engineering
基 金:国家自然科学基金资助项目(52105520,51975319);北京市自然科学基金资助项目(3214043)。
摘 要:由于轧辊磨削表面粗糙度预测困难,且其预测精度不足,为此,笔者提出了一种基于多过程信号的轧辊磨削表面粗糙度智能预测方法。首先,以砂轮转速、磨削深度、拖板速度和头架转速为变量,对轧辊进行了全因素磨削实验,采集了磨削过程中的多过程信号,即声发射信号、振动信号和主轴电流信号,测量了磨后轧辊的表面粗糙度;对信号进行了分段处理,强化了信号与粗糙度的关联,并对粗糙度进行了离散化处理,将回归问题转化为分类问题;然后,提取了各类信号在时域和频域上的众多特征值,并利用主成分分析法(PCA)对其进行了特征降维融合,构建了多种类型的特征输入;最后,利用网格搜索法优化了多层感知机(MLP)网络,得到了粗糙度的预测模型,实现了对轧辊磨削表面粗糙度的智能预测。研究结果表明:相较于单信号方案,多信号方案能够提供更全面、准确的信息;基于PCA的降维融合特征能进一步提高MLP网络的预测效果,其准确率为78.16%,F1值为0.7776,平均偏离距离为0.29。Due to the difficulty in predicting the surface roughness of roll grinding and its insufficient prediction accuracy,an intelligent prediction method of rolling surface roughness based on multi-process signals was proposed.Firstly,with the wheel speed,grinding depth,carriage speed and headstock speed as variables,a full-factor grinding experiment was carried out on the roll,and multi-process signals during the grinding process were collected,namely acoustic emission,vibration and spindle current signals,the surface roughness of the roll after grinding was measured.Then,many eigenvalues of various signals in the time domain and frequency domain were extracted,and feature dimension reduction and fusion were carried out by using principal component analysis(PCA),and various types of feature inputs were constructed.Finally,the multi-layer perceptron(MLP)network was optimized by grid search method,and the prediction model of roughness was obtained,which realizes the intelligent prediction of the surface roughness of roll grinding.The results show that the multi-signal scheme can provide more comprehensive and accurate information than single-signal scheme;the reduced dimensional fusion feature based on PCA can further improve the prediction effect of MLP networks,and the accuracy,F1-score and mean deviation distance are 78.16%,0.7776 and 0.29 respectively.
关 键 词:全因素磨削实验 声发射信号 网格搜索法 多过程信号 降维融合特征 主成分分析法 多层感知机网络 粗糙度预测模型
分 类 号:TH161.14[机械工程—机械制造及自动化] TG580[金属学及工艺—金属切削加工及机床]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38