检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李哲 胡胜 张守京[1] 李文 LI Zhe;HU Sheng;ZHANG Shoujing;LI Wen(School of Meehanical and Electrical Engineering,Xi'an Polytechnic University,Xi'an 710048,China)
机构地区:[1]西安工程大学机电工程学院,陕西西安710600
出 处:《轻工机械》2022年第5期22-28,共7页Light Industry Machinery
基 金:中国纺织工业联合会指导计划项目(2020112);陕西省自然科学基金(2022JQ-721);西安工程大学博士启动基金项目(BS201834)。
摘 要:针对纺纱生产过程影响因素多、监测维度广导致的过程波动难以分析和纱线质量难以预测的难题,课题组提出一种基于多关联参数特征子空间的纺纱质量波动预测方法。首先分析影响纱线质量的关联参数之间关系,构造能够表征纱线质量波动的特征子空间;然后构建面向特征子空间的纱线质量深度学习预测模型,实现纱线质量智能预测。通过实例进行分析,结果显示提出的方法能够有效分析纱线质量的多关联参数波动规律,并能准确对纱线质量进行预测。Aiming at the problems of the analysis process fluctuation and the prediction of yarn quality caused by multiple influencing factors and wide monitoring dimensions in the spinning production process, a method for predicting spinning quality fluctuations based on feature subspaces of multiple correlation parameters was proposed. Firstly, the relationship between the correlated parameters that affects yarn quality was analyzed, and the feature subspace that characterizes yarn quality fluctuations was constructed. Then the feature subspace-oriented deep learning prediction model of yarn quality was constructed to realize the intelligent prediction of yarn quality. Finally, through the analysis of examples, the results show that the proposed method can effectively analyze the fluctuation law of multi-correlation parameters of yarn quality and accurately predict yarn quality.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.129.58.166