检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭朦 陈紫强[1] 邓鑫 梁晨 GUO Meng;CHEN Zi-qiang;DENG Xin;LIANG Chen(Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,Guilin University of Electronic Technology,Guilin 541004,China)
机构地区:[1]桂林电子科技大学,广西无线宽带通信与信号处理重点实验室,桂林541004
出 处:《科学技术与工程》2022年第27期12038-12044,共7页Science Technology and Engineering
基 金:国家自然科学基金(61861011,61871425);广西重大科技项目(AA17204093);桂林电子科技大学研究生教育创新计划项目。
摘 要:随着交通行业的发展,交通标志检测识别成为了辅助驾驶系统中最热门的研究方向之一。在实际行车道路中,交通标志具有目标小且类别繁多的特点,针对现有检测与识别算法难以同时兼顾准确度和速率的问题,提出一种YOLOv5l(you only look once version 5l)与视觉转换器(vision transformer,ViT)结合的检测与识别方法。首先采用YOLOv5l对目标进行检测,得出交通标志的位置信息,再将其输入ViT进行分类识别,其中特征连接部分引入DenseNet网络模块,来实现原始特征和卷积后特征映射的密集连接,加强特征的传递性,提高识别率。结果表明:在GTSDB和GTSRB数据集上实验效果更佳,交通标志检测速率达到20 ms,准确率达到98.78%,相比全连接层识别准确率提高了约4%。With the development of the transportation industry, traffic signs detection and recognition has become one of the most popular research directions in advanced driving assistant system. In the actual driving road, traffic signs have the characteristics of small targets and various categories. In view of the problem that the existing detection and recognition algorithms were difficult to take into account the accuracy and speed at the same time, a detection and recognition method combining YOLOv5 l and vision transformer(ViT) was proposed. Firstly, YOLOv5 l was used to detect objects to obtain the location information of traffic signs. Then, the detection results were input into ViT for recognition, and the DenseNet network was added to the feature connection unit in order to densely connect the original features and the convolutional feature maps, thus enhancing the transferability of features and improving the recognition accuracy. The results show that this algorithm has better performance on GTSDB and GTSRB datasets. The detection rate of traffic signs reaches 200 ms, and the accuracy rate reaches 98.78%, which is about 4% higher than that of the fully connected network.
关 键 词:交通标志 检测与识别 YOLOv5l 视觉转换器
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.215