检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张立欣[1,2] 杨翠芳 陈杰 张晓果[3] 张楠楠 张晓[1] ZHANG Lixin;YANG Cuifang;CHEN Jie;ZHANG Xiaoguo;ZHANG Nannan;ZHANG Xiao(College of Information Engineering,Tarim University,Alar Xinjiang Uygur Autonomous Region,Alaer 843300,China;School of Science,Nanjing University of Science and Technology,Nanjing 210094,China;School of Mathematics and Physics,Henan University of Urban Construction,Pingdingshan 467036,China)
机构地区:[1]塔里木大学信息工程学院,新疆维吾尔自治区阿拉尔843300 [2]南京理工大学理学院,江苏南京210094 [3]河南城建学院数理学院,河南平顶山467036
出 处:《食品与发酵工业》2022年第20期36-43,共8页Food and Fermentation Industries
基 金:塔里木大学校长基金(TDZKSS202006);国家自然科学基金(31960503);塔里木大学农业工程实验室重点项目(TDNG20180301);塔里木大学-中国农业大学联合基金(ZNLH202102)。
摘 要:为实现对红富士苹果的产地溯源,采集阿克苏、静宁、灵宝、烟台的红富士苹果近红外光谱数据,分别采用归一化、中心化、一阶导数、二阶导数、标准正态变换、多元散射校正(multivariate scattering correction,MSC)、小波变换、SG平滑变换、傅里叶变换等9种方法对原始光谱进行预处理,建立概率神经网络(probabilistic neural network,PNN)模型对苹果的产地进行识别。结果表明,MSC预处理之后的模型总准确率最高,为97.5%,阿克苏、静宁、灵宝、烟台4个产地的准确率分别为100%、100%、90%、100%。为简化模型,对MSC预处理之后的光谱数据分别采用主成分法、连续投影算法(successive projection algorithm,SPA)、竞争性自适应重加权算法(competitive adaptive reweighted sampling,CARS)、随机蛙跳算法(random frog,RF)、CARS-SPA、RF-SPA选取特征变量建模。综合考虑正确率和模型的复杂性,最优模型MSC-CARS-SPA-PNN的测试集的总准确率为98.75%,4个产地的红富士苹果准确率分别达到了100%、100%、95%、100%。该研究可为红富士苹果的产地溯源提供理论参考。Near-infrared spectrum data of Red Fuji apples from Aksu,Jingning,Lingbao,and Yantai were collected to trace the origin of Red Fuji apples.Nine methods including normalization(NOR),centralization(CEN),first derivative(1-DER),second derivative(2-DER),standard normal transform(SNV),multivariate scattering correction(MSC),wavelet transform(WT),SG smoothing transform(SG),and Fourier transform(FT)were used to preprocess the original spectrum.Results showed that the model after multivariate scattering correction pretreatment had the highest recognition rate of 97.5%,and the recognition rates of Aksu,Jingning,Lingbao,and Yantai were 100%,100%,90%,and 100%,respectively.To simplify the model,principal component analysis(PCA),successive projection algorithm(SPA),competitive adaptive reweighted sampling(CARS),random frog(RF),and their combination algorithms were used to select characteristic variables.Results showed that the total recognition rate of MSC-CARS-SPA-PNN was 98.75%,and the recognition rates of Red Fuji apples from four producing areas were 100%,100%,95%,and 100%,respectively,which could provide theoretical reference for the origin discrimination of Red Fuji apples.
关 键 词:苹果 近红外光谱 概率神经网络 连续投影算法 竞争性自适应重加权算法
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.112