检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王栋栋 WANG Dongdong(School of Mechanical Engineering,University of Shanghai for Science and Technology,Shanghai 200082,China)
出 处:《软件工程》2022年第11期19-22,共4页Software Engineering
摘 要:眼底血管的健康状态对于研究各类眼科疾病具有重要的参考意义。为了帮助临床医疗人员对眼底微血管形态结构图像的分析来诊断疾病,文中提出了一种基于编码-解码(Encoder-Decoder)结构的U-net的眼底血管分割方法。首先,在模型训练之前对图像进行预处理,然后使用Leaky ReLU激活函数替换U-net ReLU,避免了神经元的死亡问题,同时使用Adam(Adaptive Moment Estimate)优化器代替梯度下降法优化学习策略,最后对血管分割的平均交并比进行计算评估。实验表明,优化后的模型的平均精度可达到93.29%,相比原算法提升了3.26%。The health status of fundus vessels is of great significance to the study of various ophthalmic diseases.In order to help clinical medical personnel diagnose diseases by analyzing the morphological structure images of fundus microvessels,this paper proposes a method of fundus vessels segmentation based on Encoder-Decoder structure of U-net.First,images are preprocessed before model training,and the Leaky ReLU(Leaky Rectified Linear Unit)activation function is used to replace U-net ReLU during model training,avoiding neuron death.Meanwhile,Adam optimizer is used instead of gradient descent method,to optimize the learning strategy.Finally,the Mean Intersection over Union of the vessel segmentation is calculated and evaluated.Experimental results show that the average accuracy of the optimized model can reach 93.29%,which is 3.26%higher than the original algorithm.
关 键 词:眼底血管分割 Encoder-Decoder结构 Leaky ReLU Adam优化器
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200