检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李璧镜 LI Bi-jing(School of Mathematics and Information Science,Baoji University of Arts and Sciences,Baoji 721013,Shaanxi,China)
机构地区:[1]宝鸡文理学院数学与信息科学学院,陕西宝鸡721013
出 处:《宝鸡文理学院学报(自然科学版)》2022年第3期1-5,11,共6页Journal of Baoji University of Arts and Sciences(Natural Science Edition)
基 金:陕西省教育厅专项科研项目(14JK1050)。
摘 要:目的在模态逻辑系统中寻找一种广泛通用的公式真度理论框架,成为各种系统中已有真度理论的高度抽象或推广。方法从逻辑语构角度出发,将某一逻辑公式在特定环境下为真的程度看作是一个概率值,给出此概率值应该满足的公理刻画,并且结合不同逻辑系统自身的推理特点,寻找模态公式真度的内在关系性质。结果建立的真度理论分别在基本模态逻辑系统K、模态系统S4和S5中讨论分析了模态公式真度所满足的规律特征。结论不再受限于可能世界的有限性和概率测度空间的均匀性,进一步完善了模态公式的真度理论,为模态逻辑系统内进行近似推理提供了可行的模式。Purposes-To find a widely-used theoretical framework of formula truth-degree in modal logic system, which can become a highly abstract or essential generalization of formula truth-degree theory under various semantic backgrounds of all kinds of logic systems. Methods-From the perspective of the syntax, the truth-degree of modal formula defined by the axiomatic characterizations, is regarded as a probability value in the specific semantic background. Combined with the reasoning characteristics of different logic systems, the numerical relationship of the truth-degree of modal formula is compared. Results-The numerical laws and characteristics of the truth-degree of modal formula are discussed and analyzed in the basic modal logic system K, modal systems S4 and S5. Conclusions-The truth-degree theory of modal formula without the finite set of possible world and the uniform probability of measure space is established. It provides a feasible model for approximate reasoning in logic system.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222