检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄艳[1] 邓琪 曹丽萍 范咏梅[2] 肖春霞[3] HUANG Yan;DENG Qi;CAO Liping;FAN Yongmei;XIAO Chunxia(Department of Cardiology,the First Affiliated Hospital of Hunan Normal University/Hunan Provincial People's Hospital,Changsha 410005,China;Functional Department,Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University,Changsha 410005,China;Department of Electrocardiogram,Hunan Provincial People's Hospital/the First Affiliated Hospital of Hunan Normal University,Changsha 410005,China)
机构地区:[1]湖南师范大学附属第一医院湖南省人民医院心内科,湖南省长沙市410005 [2]湖南省人民医院湖南师范大学附属第一医院功能科,湖南省长沙市410005 [3]湖南省人民医院湖南师范大学附属第一医院心电图室,湖南省长沙市410005
出 处:《实用心脑肺血管病杂志》2022年第11期6-10,共5页Practical Journal of Cardiac Cerebral Pneumal and Vascular Disease
基 金:湖南省研究生科研创新项目(CX20210498);湖南省卫生健康委项目(02203103241);长沙市自然科学基金资助项目(kq2014190)。
摘 要:心房颤动是一种常见的心律失常类型,随着年龄增长其发病率不断升高,且其不规则的心脏节律会引起急性脑卒中等严重并发症。但心房颤动发作时多无明显症状,患者常在发生栓塞事件后才会被首次确诊。近年来随着人工智能技术不断发展,机器学习可以帮助临床医生识别心房颤动高危人群。本文主要综述了机器学习在心房颤动筛查和管理中的应用进展,旨在提高临床医生对机器学习的认识。Atrial fibrillation is a common type of arrhythmia.Its incidence increases with age,and its irregular heart rhythm can cause serious complications such as acute stroke.However,there are no obvious symptoms when atrial fibrillation attacks,and patients are often diagnosed for the first time after embolization events.In recent years,with the development of artificial intelligence technology,machine learning can help clinicians identify people with high risk of atrial fibrillation.This article reviews the application progress of machine learning in screening and management of atrial fibrillation,in order to improve clinicians'understanding of machine learning.
分 类 号:R541.75[医药卫生—心血管疾病]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28