检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:戴粤 戴吾蛟[1,2] 余文坤 DAI Yue;DAI Wujiao;YU Wenkun(Department of Surveying Engineering&Geo-Informatics,Central South University,Changsha 410083,China;Key Laboratory of Precise Engineering Surveying&Deformation Disaster Monitoring of Hunan Province,Changsha 410083,China)
机构地区:[1]中南大学测绘与遥感科学系,湖南长沙410083 [2]湖南省精密工程测量与形变灾害监测重点实验室,湖南长沙410083
出 处:《测绘学报》2022年第10期2149-2159,共11页Acta Geodaetica et Cartographica Sinica
基 金:国家自然科学基金(41074004,42174053);湖南省自然科学基金(2021JJ30805);中南大学研究生创新项目(206021703)。
摘 要:针对滑坡参数反演存在的多目标优化问题,同时为弥补滑坡深部位移监测点位稀疏的不足,提出了一种综合地表与深部位移监测数据的滑坡多目标加权位移反分析方法。该方法利用地表与深部位移监测数据构建多目标位移反分析模型,采用抗差Helmert方差分量估计法计算各类位移观测量的抗差验后随机模型,优化反演模型的权参数。试验结果表明:深部位移信息量不足会导致位移反分析结果出现严重偏差,综合地表与深部位移信息的反演结果更为准确;基于抗差Helmert方差分量估计的多目标加权位移反分析方法不仅可以合理确定不同类型观测数据的权重,还能够有效抵制异常粗差对反演结果的影响,提高了反演计算精度。In view of the multi-objective optimization problem of landslide parameter inversion,and to compensate for the lack of sparse landslide displacement monitoring point,a landslide multi-objective weighted displacement back analysis method synthesizing ground and underground displacement monitoring data is proposed.Firstly,the multi-objective weighted displacement back analysis model is constructed by ground and underground displacement information.Secondly,the robust post-test random model of various observations is calculated by the robust Helmert variance component estimation method,and then it is used to optimize the inversion model.Finally,the equivalent mechanical parameters are solved by iteration computation.Experimental results show that insufficient amount of underground displacement information will lead to serious deviations in the displacement back analysis results,and the inversion results that integrate ground and underground displacement information are more accurate;the multi-objective weighted displacement back analysis method based on robust Helmert variance component estimation can not only reasonably determine the weight of different types of observation data,but also effectively resist the influence of abnormal gross errors on the inversion results,and improve the inversion calculation accuracy.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.74.140