检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李冰村 唐晓文 何建新[1,2] 唐佳佳 李星泽 申枫 LI Bingcun;TANG Xiaowen;HE Jianxin;TANG Jiajia;LI Xingze;SHEN Feng(Chengdu University of Information Technology,Chengdu 610225,China;CMA Key Laboratory of Atmospheric Sounding,Chengdu 610225,China)
机构地区:[1]成都信息工程大学,成都610225 [2]中国气象局大气探测重点开放实验室,成都610225
出 处:《气象科学》2022年第5期581-590,共10页Journal of the Meteorological Sciences
基 金:国家重点研发计划资助项目(2018YFC1506103);成都信息工程大学大学生创新创业训练计划项目(202010621032)。
摘 要:利用2017—2019年贵州省威宁彝族回族苗族自治县的C波段天气雷达数据,提取了多种与冰雹相关的雷达特征参量,并结合地面降雹记录建立了客观的冰雹样本标记方法。通过支持向量机、决策树和朴素贝叶斯三种机器学习方法,对冰雹高发区贵州省威宁的冰雹天气过程进行建模与评估。评估结果表明,采用机器学习方法可以有效地识别冰雹天气过程。支持向量机和决策树方法的命中率(Probability of Detection,POD)均较高,分别为88.9%和90.5%;临界成功指数(Critical Success Index,CSI)分别为73.1%和70.3%;误报率(False Alarm Rate,FAR)分别为19.6%和24.1%。朴素贝叶斯方法的POD和CSI相对偏低,分别为67.8%、62.8%,但FAR最低,为10.6%。Three machine learning methods,namely support vector machine,decision tree and Naive Bayesian,were applied to model and predict hail events occurred in Weining,Guizhou Province from 2017 to 2019.A variety of hail-related features were extracted from the C-band weather radar and an improved objective hail sample labelling procedure was proposed.The verification results showed that the machine learning methods were able to effectively identify the hail events.Both the support vector machine and decision tree methods had a high POD of 88.9% and 90.5% respectively,CSI of 73.1% and 70.3%,and FAR of 19.6% and 24.1% respectively.The POD and CSI of Naive Bayesian method were lower than the other two methods at 67.8% and 62.8% respectively,but its FAR was the lowest at 10.6%.
分 类 号:S427[农业科学—植物保护] P412.25[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171