基于二分光反射模型与随机森林的中医舌苔润燥识别研究  

Research on recognition of tongue-fur in traditional Chinese medicine based on dichroic reflection model and random forest

在线阅读下载全文

作  者:颜建军[1] 曾梦浩 郭睿[2] 穆伟伟 燕海霞[2] 周炜[1] 王忆勤[2] YAN Jian-jun;ZENG Meng-hao;GUO Rui;MU Wei-wei;YAN Hai-xia;ZHOU Wei;WANG Yi-qin(School of Mechanical and Power Engineering,East China University of Science and Technology,Shanghai 200237,China;Comprehensive Laboratory of Four Diagnostic Methods,Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China)

机构地区:[1]华东理工大学机械与动力工程学院,上海200237 [2]上海中医药大学四诊信息综合实验室,上海201203

出  处:《中华中医药杂志》2022年第10期5908-5912,共5页China Journal of Traditional Chinese Medicine and Pharmacy

基  金:国家自然科学基金面上项目(N o.81673880);上海市健康辨识与评估重点实验室项目(No.21DZ2271000)。

摘  要:在以往的中医舌苔润燥识别研究中,只利用单个特征或指标,通过与经验阈值进行比较来进行舌苔润燥的识别。提取的特征不能充分地反映水分亮斑区的特性,同时利用经验阈值作为分类依据,易受人为主观因素的影响。本课题组提出一种基于二分光反射模型与随机森林的舌苔润燥识别方法。在已有研究的基础上,基于二分光反射模型分析亮斑区与本色区的光学特性差异,提取舌图像的水分亮斑区的RGB协方差矩阵特征值、亮度和等特征,并对这些特征进行统计分析;基于随机森林算法建立舌苔润燥识别模型。实验结果表明,该方法分类准确率可达95.9%,与已有的舌苔润燥识别方法相比有所提升。该研究为舌苔润燥识别提供了一种新的思路和方法,对舌诊客观化具有一定的实用价值。In the past research on the identification of tongue-fur moisturizing in traditional Chinese medicine, only a single feature or index was used to identify tongue-fur moisturizing and dryness by comparing with empirical threshold. The extracted features cannot fully reflect the characteristics of the bright spots of water, and at the same time, the empirical threshold is used as the basis for classification, which is susceptible to subjective factors. This paper proposes a method for identifying tongue coating moisturization based on the bipartite light reflection model and random forest. Based on the existing research,based on the dichroic reflection model to analyze the optical characteristic difference between the bright spot area and the natural color area, extract the RGB covariance matrix eigenvalues, brightness and other characteristics of the moisture bright spot area of the tongue image, and statistical analysis is performed on the features;the tongue fur moisturizing recognition model is established based on the random forest algorithm. The experimental results show that the classification accuracy of this method is improved to 95.9% compared with the existing tongue fur moisturizing recognition method. This research provides a new idea and method for the identification of tongue fur moisturization and has certain practical value for the objectification of tongue diagnosis.

关 键 词:特征分析 二分光反射模型 随机森林 舌苔润燥识别 

分 类 号:R241.25[医药卫生—中医诊断学] TP391.41[医药卫生—中医临床基础]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象