检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯海宽[1,2] 陶惠林 赵钰 杨福芹 樊意广 杨贵军 FENG Hai-kuan;TAO Hui-lin;ZHAO Yu;YANG Fu-qin;FAN Yi-guang;YANG Gui-jun(Key Laboratory of Quantitative Remote Sensing in Agriculture of Ministry of Agriculture and Rural Affairs,Information Technology Research Center,Beijing Academy of Agriculture and Forestry Sciences,Beijing 100097,China;National Engineering and Technology Center for Information Agriculture,Nanjing Agricultural University,Nanjing 210095,China;College of Civil Engineering,Henan University of Engineering,Zhengzhou 451191,China)
机构地区:[1]农业农村部农业遥感机理与定量遥感重点实验室,北京市农林科学院信息技术研究中心,北京100097 [2]南京农业大学国家信息农业工程技术中心,江苏南京210095 [3]河南工程学院土木工程学院,河南郑州451191
出 处:《光谱学与光谱分析》2022年第11期3575-3580,共6页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(41601346,41871333);河南省重点研发与推广专项项目(202102110270)资助。
摘 要:叶绿素含量(SPAD)是作物长势评价的重要指标,可以监测农作物的生长状况,对农业管理至关重要,因此快速、准确地估算SPAD具有重要意义。以冬小麦为研究对象,利用无人机高光谱获取了拔节期、挑旗期和开花期的影像数据,获取植被指数和红边参数,研究植被指数与红边参数估算SPAD的能力。先将植被指数与红边参数分别与不同生育期的SPAD进行相关性分析,再基于植被指数、植被指数结合红边参数,通过偏最小二乘回归(PLSR)方法估算SPAD,最后制作SPAD分布图验证模型的有效性。结果表明,(1)大部分植被指数与红边参数在3个主要生育期与SPAD相关性均达到极显著水平(0.01显著);(2)单个植被指数构建的SPAD估算模型中,LCI表现最好(R^(2)=0.56,RMSE=2.96,NRMSE=8.14%),红边参数中Dr/Dr_(min)表现最好(R^(2)=0.49,RMSE=3.18,NRMSE=8.76%);(3)基于植被指数结合红边参数构建的SPAD估算模型效果最佳,优于仅基于植被指数构建的SPAD估算模型,同时,随着生育期推移,两种模型均在开花期达到最高精度,R^(2)分别为0.73和0.78,RMSE分别为2.49和2.22,NRMSE分别为5.57%和4.95%。因此,基于植被指数结合红边参数,并使用PLSR方法可以更好地估算SPAD,可以为基于无人机遥感的SPAD监测提供一种新的方法,也可为农业管理提供参考。Chlorophyll content(SPAD)is a vital index for crop growth evaluation,which can monitor the growth of crops and is crucial for agricultural management,so it is important to estimate SPAD quickly and accurately.In this study,the remote sensing images of the jointing,flagging,and flowering stages were acquired using UAV hyperspectral for winter wheat.The vegetation indices and red edge parameters were extracted to explore the ability of vegetation indices and red edge parameters to estimate SPAD.Firstly,the vegetation indices and red edge parameters were correlated with the SPAD of different fertility stages.Then,the SPAD was estimated based on the vegetation indices,vegetation indices combined with red edge parameters,and using partial least square regression(PLSR)method.Finally,the SPAD distribution map was produced to verify the validity of the model.The results showed that(1)most of the vegetation indices and red edge parameters were correlated with SPAD at highly significant levels(0.01 significant)in all three major reproductive stages;(2)the SPAD estimation model constructed from individual vegetation index had the best performance for LCI among vegetation indexes(best R^(2)=0.56,RMSE=2.96,NRMSE=8.14%)and Dr/Dr_(min) performed best(best R^(2)=0.49,RMSE=3.18,NRMSE=8.76%);(3)SPAD estimation model based on vegetation indices combined with red edge parameters was the best and better than SPAD estimation model based on vegetation indices only.Meanwhile,both models reached the highest accuracy at the flowering stage as the fertility stage progressed,with R^(2) of 0.73 and 0.78,RMSE of 2.49 and 2.22,and NRMSE of 5.57%and 4.95%,respectively.Therefore,based on the vegetation indices combined with the red edge parameters,using the PLSR method can improve the estimation effect of SPAD,which can provide a new method for SPAD monitoring based on UAV remote sensing,and also provide a reference for agricultural management.
关 键 词:冬小麦 叶绿素含量 植被指数 红边参数 偏最小二乘回归
分 类 号:S25[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7