PENALTY-FACTOR-FREE STABILIZED NONCONFORMING FINITE ELEMENTS FOR SOLVING STATIONARY NAVIER-STOKES EQUATIONS  

在线阅读下载全文

作  者:Linshuang He Minfu Feng Qiang Ma 

机构地区:[1]School of Mathematics,Sichuan University,Chengdu 610064,China

出  处:《Journal of Computational Mathematics》2022年第5期728-755,共28页计算数学(英文)

基  金:National Nature Science Foundation of China(No.11971337,No.11801387)。

摘  要:Two nonconforming penalty methods for the two-dimensional stationary Navier-Stokes equations are studied in this paper.These methods are based on the weakly continuous P1 vector fields and the locally divergence-free(LDF)finite elements,which respectively penalize local divergence and are discontinuous across edges.These methods have no penalty factors and avoid solving the saddle-point problems.The existence and uniqueness of the velocity solution are proved,and the optimal error estimates of the energy norms and L^(2)-norms are obtained.Moreover,we propose unified pressure recovery algorithms and prove the optimal error estimates of L^(2)-norm for pressure.We design a unified iterative method for numerical experiments to verify the correctness of the theoretical analysis.

关 键 词:Stationary Navier-Stokes equations Nonconforming finite elements Penalty stabilization methods DG methods Locally divergence-free. 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象