多传感器组合导航系统的联邦UKF算法研究  被引量:5

Research on federal UKF algorithm for multi-sensor integrated navigation system

在线阅读下载全文

作  者:朱璐瑛[1] 孙炜玮 刘成铭 孙兆玮 Zhu Luying;Sun Weiwei;Liu Chengming;Sun Zhaowei(Engineering College,Yantai Nanshan University,Yantai 265713,China;Naval Aeronautical University,Yantai 264001,China;Donghai Thermal Power Co.,Ltd.,Yantai 265700,China)

机构地区:[1]烟台南山学院工学院,烟台265713 [2]海军航空大学,烟台264001 [3]东海热电有限公司,烟台265700

出  处:《电子测量与仪器学报》2022年第7期91-98,共8页Journal of Electronic Measurement and Instrumentation

基  金:国家自然科学基金(60874112,61673208);山东省自然科学基金(2016ZRA06068)项目资助。

摘  要:多传感器组合导航系统是一种典型的非线性系统,为了提高其滤波精度,本文提出了多传感器组合导航系统联邦UKF算法。首先,在建立多传感器组合导航系统的非线性状态方程及线性量测方程的基础上,对标准UKF进行了简化;然后,以简化UKF为基础提出了多传感器组合导航系统的联邦UKF算法,并设计了姿态融合算法及其故障检测函数以验证该算法的容错性能;最后,以GNSS/CNS/SINS多传感器组合导航系统为例进行了仿真验证。仿真结果表明,相对于联邦线性卡尔曼滤波器,联邦UKF算法可提高位置及姿态精度约25.8%、22.2%,同时继承了联邦线性卡尔曼滤波器的容错性能。Multi-sensor integrated navigation system is a typical nonlinear system,a federated UKF algorithm is proposed to improve its filtering accuracy in this paper.Firstly,the standard UKF is simplified on the basis of establishing nonlinear state equation and linear measurement equation of multi-sensor integrated navigation system.Then,based on this simplified UKF,the federated UKF algorithm of multi-sensor integrated navigation system is proposed,the attitude fusion algorithm is designed,and the fault detection function is designed simply in order to verify the fault-tolerant performance of the algorithm.Finally,the GNSS/CNS/SINS multi-sensor integrated navigation system is taken as an example for simulation verification.The simulation results show that the federated UKF algorithm can improve the position and attitude accuracy by 25.8%and 22.2%when compared with the federated linear Kalman filter,and inherit the fault-tolerant performance of the federated linear Kalman filter.

关 键 词:联邦UKF 简化UKF 多传感器组合导航 姿态融合 容错性能 

分 类 号:TN966[电子电信—信号与信息处理] V249.3[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象