Predicting gas-bearing distribution using DNN based on multi-component seismic data: Quality evaluation using structural and fracture factors  被引量:4

在线阅读下载全文

作  者:Kai Zhang Nian-Tian Lin Jiu-Qiang Yang Zhi-Wei Jin Gui-Hua Li Ren-Wei Ding 

机构地区:[1]College of Earth Sciences and Engineering,Shandong University of Science and Technology,Qingdao,Shandong,266590,China [2]Laboratory for Marine Mineral Resources,Qingdao National Laboratory for Marine Science and Technology,Qingdao,Shandong,266237,China

出  处:《Petroleum Science》2022年第4期1566-1581,共16页石油科学(英文版)

基  金:funded by the Natural Science Foundation of Shandong Province (ZR202103050722);National Natural Science Foundation of China (41174098)。

摘  要:The tight-fractured gas reservoir of the Upper Triassic Xujiahe Formation in the Western Sichuan Depression has low porosity and permeability. This study presents a DNN-based method for identifying gas-bearing strata in tight sandstone. First, multi-component composite seismic attributes are obtained.The strong nonlinear relationships between multi-component composite attributes and gas-bearing reservoirs can be constrained through a DNN. Therefore, we identify and predict the gas-bearing strata using a DNN. Then, sample data are fed into the DNN for training and testing. After optimized network parameters are determined by the performance curves and empirical formulas, the best deep learning gas-bearing prediction model is determined. The composite seismic attributes can then be fed into the model to extrapolate the hydrocarbon-bearing characteristics from known drilling areas to the entire region for predicting the gas reservoir distribution. Finally, we assess the proposed method in terms of the structure and fracture characteristics and predict favorable exploration areas for identifying gas reservoirs.

关 键 词:Multi-component seismic exploration Tight sandstone gas reservoir prediction Deep neural network(DNN) Reservoir quality evaluation Fracture prediction Structural characteristics 

分 类 号:P618.13[天文地球—矿床学] P631.4[天文地球—地质学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象