基于雾计算的无线传感器网络联合入侵检测算法  被引量:3

Fog computing-based federated intrusion detection algorithm for wireless sensor networks

在线阅读下载全文

作  者:朱梦圆 陈卓 刘鹏飞 吕娜 ZHU Mengyuan;CHEN Zhuo;LIU Pengfei;LYU Na(Information and Navigation College,Air Force Engineering University,Xi’an 710077,China;PLA 94619,Lu’an 237000,China)

机构地区:[1]空军工程大学信息与导航学院,西安710077 [2]解放军94619部队,六安237000

出  处:《北京航空航天大学学报》2022年第10期1943-1950,共8页Journal of Beijing University of Aeronautics and Astronautics

基  金:国家自然科学基金(62074131)。

摘  要:为了保障无线传感器网络的安全性,提出一种基于雾计算的联合入侵检测算法Fed-XGB。Fed-XGB算法通过引入雾计算节点扩展网络边缘,减少通信时延,在提升联合学习全局模型和局部模型准确率的同时,降低了传输带宽和隐私泄露风险;通过改进基于直方图的近似计算方法,适应无线传感器网络数据不均衡特征;通过引入TOP-K梯度选择,最小化模型参数上传次数,提高模型参数交互效率。实验结果表明:Fed-XGB算法的检测准确率在0.97以上,误报率在0.036以下,优于其他对比算法;在遭受中毒攻击及数据含噪的情况下,算法检测分类性能依然稳定,具有较强的鲁棒性。In order to guarantee the security of wireless sensor networks,a federated intrusion detection algorithm Fed-XGB based on fog computing is proposed.The Fed-XGB algorithm extends the edge of the net-work by introducing fog computing nodes,reduces communication delay,improves the accuracy of joint learn-ing of global and local models,and reduces the transmission bandwidth and the risk of privacy leakage.By improving the approximate calculation method based on the histogram,this algorithm can adapt to the charac-teristics of unbalanced data in wireless sensor networks.Through the introduction of the TOP-K gradient selec-tion,the number of uploads of model parameters is minimized,and the interaction efficiency of model parame-ters is improved.Experimental results show that the detection accuracy of the Fed-XGB algorithm is above 0.97,and the false alarm rate is below 0.036,which is better than other comparison algorithms.The results also show that,in the face of poisoning attacks and noisy data,the detection and classification performance are still stable and has strong robustness.

关 键 词:无线传感器网络 入侵检测 雾计算 联合学习 深度学习 

分 类 号:TP393[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象