检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘文锋 李昂[1] LIU Wenfeng;LI Ang(College of Electrical Engineering,Shaanxi University of Technology,Hanzhong 723001,China)
机构地区:[1]陕西理工大学电气工程学院,陕西汉中723001
出 处:《热力发电》2022年第10期138-144,共7页Thermal Power Generation
基 金:陕西省教育厅专项科研计划项目(15JK1125)。
摘 要:局部遮阴情况下,光伏系统的功率-电压曲线呈多峰特性,传统算法跟踪最大功率点时易陷入局部最优,智能优化算法跟踪耗时较长。对此,设计了一种变步长扰动观察法(IP&O)结合改进天牛群优化(IBSO)算法的三步复合最大功率点跟踪(MPPT)算法。该算法首先采用IP&O快速跟踪到极大功率点,并利用此点功率值调整电压搜索范围;然后使用IBSO算法在电压搜索范围内进行全局寻优,以保证搜索精度;最终在IBSO算法跟踪到最大功率点附近后,再次切换为IP&O,以加快跟踪速度、减小功率振荡。将所提出算法与IP&O、天牛群优化(BSO)、布谷鸟算法结合变步长扰动观察法(CSA-IP&O)3种算法进行仿真对比,仿真结果表明:所提出算法不易陷入局部最优,能准确快速地跟踪到最大功率点,且跟踪过程中功率振荡更小。The P-U curve of photovoltaic system has a multi-peak characteristic under partial shading condition.In this case,the conventional algorithm is easy to fall into local optimum when tracking the maximum power point,and the intelligent optimization algorithm takes a long time to track.In this regard,this paper designs a three-step composite maximum power point tracking(MPPT)algorithm combining the improved perturbation and observation(IP&O)algorithm with the improved beetle swarm optimization(IBSO)algorithm.The algorithm uses IP&O algorithm to quickly track to the maximum power point at first,and uses the power value of this point to adjust the voltage search range.Then,it uses the IBSO algorithm to perform global optimization in the range to ensure the search accuracy.Finally,after the IBSO algorithm tracks near the maximum power point,the IP&O algorithm is switched again to speed up the tracking speed and reduce power oscillation.Simulation comparison between the three-step algorithm and the IP&O,BSO and CSA-IP&O algorithm is carried out.The results show that,the proposed three-step algorithm is not easy to fall into the local optimum,moreover,it can track the maximum power point accurately and quickly,and has smaller power oscillation during the tracking process.
关 键 词:光伏 局部遮阴 MPPT 变步长扰动观察法 天牛群优化算法 智能算法
分 类 号:TM615[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222