检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:卢静[1] 金智林[2] LU Jing;JIN Zhilin(Jincheng College,Nanjing University of Aeronautics and Astronautics,Nanjing 200016,China;College of Energy and Power Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 200016,China)
机构地区:[1]南京航空航天大学金城学院,南京200016 [2]南京航空航天大学能源与动力学院,南京200016
出 处:《重庆理工大学学报(自然科学)》2022年第10期58-65,共8页Journal of Chongqing University of Technology:Natural Science
基 金:国家自然科学基金项目(51775269);汽车零部件先进制造技术教育部重点实验室开放课题(2016KLMT05);江苏省自然科学基金项目(BK20211190)。
摘 要:针对变道过程中由于路面附着系数变化引起的模型非线性问题以及滚动优化算法对于实时性的要求,提出了变道过程非线性模型预测轨迹跟踪控制策略,分析了低路面附着系数引起的模型非线性特性,建立了变道过程轨迹跟踪模型及其前轮转角滚动时域优化求解方法。仿真分析及硬件在环测试可得,相比现有的线性轨迹跟踪方法,所提出的算法在高附着系数路面和低附着路面上的轨迹跟踪精度平均可提高14.35%,车辆横摆角速度跟踪误差平均可降低24.35%,侧向加速度误差平均可降低19.67%,有效实现了车辆在不同附着系数条件下的避障轨迹跟踪控制。Aiming at the model nonlinearity caused by the change of pavement adhesion coefficient in the process of lane change and the real-time requirements of rolling optimization algorithm,a nonlinear model predictive trajectory tracking control strategy in the process of lane change is proposed in this work.The model nonlinearity caused by low pavement adhesion coefficient is analyzed.Then,the track tracking model of lane changing process and the rolling time domain optimization method of front wheel angle are established.The simulation results and hardware in the loop test show that compared with the existing linear trajectory tracking methods,the trajectory tracking accuracy of the algorithm proposed in this paper can be improved by 14.35% on high adhesion road and low adhesion road,the vehicle yaw rate tracking error can be reduced by 24.35% and the lateral acceleration error can be reduced by 19.67%.Thus,the obstacle avoidance trajectory tracking control of vehicle under different adhesion coefficients is effectively realized.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.26.71